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Summary 

The subject of this thesis is the development of computer–based support for 
conceptual design of technical–physical systems, specifically controlled electro–
mechanical systems. 

Two new design approaches have been proposed recently in response to increasing 
demands on products to be designed, namely “concurrent engineering” and 
“mechatronics”. Both these approaches advocate a systems point of view in design, 
and stimulate integrated problem solving within designing. Two types of problems 
oppose the usage of an integrated problem solving approach during (conceptual) 
design: 

– cooperation and coordination among members of the design team is difficult due to 
a lack of shared meaning of communicated messages. 

– reduction of the initial lack of understanding of the design problem is hard, and the 
required learning takes too much time. 

A formal description of the design process reveals that the use of models and 
abstractions plays a crucial role in communication and learning. Solution of the above 
problems demands improved modeling capabilities of design support systems.  

One required improvement is to enable simultaneous formulations of one model in 
multiple languages, in such a way that the model can be manipulated in either of the 
formulations. This concept is called “multiple model formulations”. A system setup 
that enables multiple model formulations and yet keeps different formulations of a 
model consistent and tractable is devised. The setup incorporates automatic 
conversions between different formulations of one model. Bond graphs and iconic 
diagrams are taken as an example set of formulations for demonstrating the feasibility 
of the setup.  

Furthermore, designers require more flexible model descriptions than contemporary 
modeling systems provide. The lack of flexibility is due to the way in which 
classification of subsystems is realized in these systems. An improvement of this is 
obtained by modularizing a subsystem description into a type and a specification, and 
by subtyping, i.e. by expressing a type as a specialization of a more general type. The 
combination of modularization and subtyping, named “polymorphic modeling”, leads 
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to hierarchical subsystem libraries and gives modeling systems the possibility to 
conform to the evolutionary nature of model building.  

A model building environment for mechatronic systems is presented: the MAX system. 
MAX supports the user in creating models and evaluating them by means of network–
based analyses. Multiple model formulations (i.e. bond graphs and iconic diagrams) 
and polymorphic modeling are incorporated in the system. Conversions between 
model formulations and polymorphic model refinements enable to learn about the 
design problem. Due to the availability of an extendible, well organized model library, 
the use of explicitly described models is made easy, which enhances communication 
about the design problem. These features make MAX into a powerful model building 
environment that is well adapted to usage by designers. 



   

 

Samenvatting 

Dit proefschrift behandelt de ontwikkeling van computergebaseerde ondersteuning 
voor het conceptuele ontwerp van technisch–fysische systemem, met de nadruk op 
geregelde electro–mechanische systemen. 

Twee nieuwe ontwerpbenaderingen zijn onlangs voorgesteld om tegemoet te komen 
aan de toenemende eisen die worden gesteld aan te ontwerpen produkten, namelijk 
“concurrent engineering” en “mechatronica”. Beide benaderingen bepleiten een 
systeemgeorienteerd gezichtspunt, en stimuleren een geïntegreerde aanpak van 
ontwerpvraagstukken. Twee typen problemen bemoeilijken het gebruik van een 
geïntegreerde aanpak tijdens conceptueel ontwerpen: 

– samenwerking en coördinatie van leden van het ontwerpteam verloopt moeizaam, 
omdat men geen gemeenschappelijke betekenis toekent aan uitgewisselde 
boodschappen. 

– vermindering van het gebrek aan begrip van het ontwerpprobleem is moeilijk en 
het benodigde leerproces neemt veel tijd in beslag. 

Een formele, integrale beschrijving van het ontwerpproces maakt duidelijk dat het 
gebruik van modellen en abstracties van de werkelijkheid een doorslag–gevende rol 
speelt, zowel tijdens communicatie als bij het leerproces. Oplossing van bovenstaande 
problemen vereist een verbetering van de modelleringsmogelijkheden van 
ontwerpsystemen. 

Ten eerste moet het mogelijk zijn om één model gelijktijdig in meerdere talen te 
formuleren, zodanig dat het model kan worden gemanipuleerd in ieder van deze 
formuleringen. Dit concept wordt “multiple model formulations” (meerdere 
modelformuleringen) genoemd. Een systeemopzet is ontwikkeld die meerdere model–
formuleringen mogelijk maakt en toch de verschillende formuleringen consistent en 
beheersbaar houdt. Deze opzet omvat automatische conversies tussen verschillende 
formuleringen van hetzelfde model. Met bondgrafen en iconische diagrammen als 
voorbeeld is aangetoond dat deze systeemopzet realiseerbaar is  

Voorts verlangen ontwerpers meer flexibiliteit van modelbeschrijvingen dan huidige 
modelvormingssystemen bieden. De oorzaak van het gebrek aan flexibiliteit is de 
manier waarop classificatie van subsystemen is gerealiseerd in deze systemen. Een 
verbetering hiervan wordt bereikt door modularisering van subsysteembeschrijvingen 
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in een type en een specificatie, en door subtypering, dat wil zeggen het uitdrukken van 
een type als een specialisatie van een meer algemeen type. De combinatie van 
modularisatie en subtypering, genaamd “polymorphic modeling” (polymorf 
modelvormen), leidt tot hierarchisch georganiseerde subsysteembibliotheken en geeft 
modelvormingssystemen de mogelijkheid aan te sluiten bij het evolutionaire karakter 
van modelvormen. 

Een modelvormingsomgeving voor mechatronische systemen is beschreven: het MAX 
systeem. Dit systeem ondersteunt de gebruiker in het aanmaken van modellen en het 
evalueren ervan door middel van netwerk–gebaseerde analyses. De concepten 
“multiple model formulations” (en wel voor bondgrafen en iconische diagrammen) en 
“polymorphic modeling” zijn samen opgenomen in het systeem. Conversies tussen 
modelformuleringen en polymorfe modelverfijningen maken het mogelijk snel inzicht 
te krijgen in het ontwerpprobleem. Door de aanwezigheid van een uitbreidbare, goed 
gestructureerde modellenbibliotheek kost het gebruik van expliciet vastgelegde 
modellen weinig tijd en moeite, zodat communicatie over het ontwerpprobleem 
verbetert. Deze eigenschappen maken MAX tot een krachtige modelvormings–
omgeving die goed is aangepast aan het gebruik door ontwerpers. 
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Chapter 1 

Introduction 

1.1 Problem area 

A typical and fascinating characteristic of human beings is the ability to create artifacts 
that suit their own purposes. Whilst this activity may have started with something like 
the ‘simple’ modification of a flint so that it could be used as a knife, evolution of both 
the abilities and the needs of mankind resulted in the development of completely new 
kinds of objects and processes. An everyday example which clearly demonstrates this 
evolution is the computer. Prehistoric man was not able to create such things, but also 
did not need them. Due to the creativity of mankind, we live in a world which is more 
and more man–made, or artificial, than natural. In here, we will be concerned with the 
“science of creating the artificial” (Simon, 1981). 

In modern society, the creation of new artifacts is largely carried out in industrial 
companies operating in an economic environment. As a result, the characteristics 
required of newly created artifacts have changed. They not only need to suit purposes 
as before (functionality), they also need to work well (performance) over a significant 
period of time (reliability) for acceptable prices (cost–effectiveness). In addition, the 
time needed to generate a new artifact (innovation time) has become an important 
issue due to the pressure of competition. To deal with all this, the creation of artifacts 
has been split up into two phases, which are quite separate (Cross, 1989). In the first 
phase, the design process, the conception of the artifact to be created is formed and a 
description, or model, of it is made. This model may not only contain features of the 
artifact itself, but also of the way in which it can be made, the production. Only after 
the final, complete description (the design) has been finished, is the second phase 
entered: the artifact will be physically realized in the manufacturing process, leading 
to an actual, physical product. 

The functionality, performance and reliability of a product are largely determined 
during the design process, as during this process decisions are made on what the 
artifact will be like and how it will be produced. The decisions made during the design 
process also have the largest influence on the cost–effectiveness of the product. This is 
suggested by evaluation of data from the Ford Motor Company and Xerox (Ullman, 
1992). Finally, it can be noted that the time needed for the design of a new product is 
usually much longer than the time needed for producing a new product. Therefore, the 
innovation time is also greatly dependent on the design process. It can thus be 
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concluded that in order to stay competitive it is critical for an industrial company to 
master the design process and to continually improve it. This thesis deals with the 
understanding of design and the development of proper support to enhance it.  

We will specifically consider the design of controlled electro–mechanical systems. 
Examples of such systems are assembly machines, automatic guided vehicles, 
consumer products like CD–players and video cameras, etc. The number of systems 
belonging to this class is rapidly growing. Recent advances both in electronics and 
computer technology, in software engineering and in control engineering enable the 
addition of ‘intelligence’ to traditionally purely mechanical products. This increases 
their functionality, performance and reliability simultaneously, without necessarily 
increasing their cost.  

The research described here is focused on controlled electro–mechanical systems, and 
approaches design activities in this field as follows: 

– We regard artifacts from a systems point of view, i.e. as a structure of interrelated 
elements that are embedded in an environment. 

– We study systems that realize their functionality using mainly electronic and 
mechanical parts, and a controller (either digital or analog). The use of a controller 
implies that the systems of interest have an active part. This active part performs 
some kind of signal processing to force the system to behave in a certain way. 

– We concentrate on aspects that relate to the energetic (and therefore the dynamic) 
behavior of the systems. The reason for this is that it is through energy exchange 
that functional interactions between subsystems take place.  

1.2 Subject of research 

Controlled electro–mechanical systems are generally made up of a large number of 
parts, which interact in many ways. Such systems are complex, because the whole is 
more than the sum of the parts in the sense that given the properties of the parts and 
the laws of their interaction, it is not a trivial matter to infer the properties of the whole 
(Simon, 1981). Their complexity is essential; with enough effort we may master it and 
even engineer an illusion of simplicity in their interfaces, but we can never remove the 
internal complexity (Booch, 1991). 

The inherent complexity of the design of a controlled electro–mechanical system will 
have to be tackled in order that the outcome will be a reliable, high performance 
product with the proper functionality. The technique to do this has been known since 
ancient times: divide et impera (divide and rule). Two major ways of decomposing the 
design problem have traditionally been applied in industry: a division concerned with 
the product life cycle, and a division concerned with problem domains or disciplines. 
Both divisions have had considerable consequences on design practice. Neither of the 
decompositions alone is sufficient to explain the way design problems are approached. 
Although presented here as distinct, in fact a strict separation of the two is not 
possible. Different phases of the product life cycle imply to some extent a focus on 
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different problem domains, and vice versa. However, within the scope of this 
treatment it suffices to consider them one after the other. 

A product life cycle can be assumed to consist of five stages: 

1 Design. The conception of the product and of the means of production is formed, 
and a more or less precise description of both is made. 

2 Production. The product is realized as a result of a manufacturing and/or assembly 
process. 

3 Sale. The product is distributed, and sold to the consumer. 
4 Service. The product is in normal operation. 
5 Product retirement. Liquidation of the product, recycling of product parts. 

Within the design process, three design phases have traditionally been distinguished, 
which address different stages of the product life cycle. 

1.1 Product definition. A statement is developed what the product should be in terms 
of specifications and requirements from the perspective to optimize its sale. The 
feasibility of the product (both technical and economic) is estimated and a plan of 
resources for the remaining phases is made. Most of the times, the marketing 
department is responsible for this phase. 

1.2 Product design. A plan is made on how to implement the deliverables of the 
product. Recently, concerns of product retirement influence this plan 
considerably. This phase is the responsibility of the design department. 

1.3 Manufacturing engineering. The method of production is devised and the 
production system is prepared. The engineering department is generally 
responsible for this phase. 

During product assessment, product design and manufacturing engineering, the design 
problem is usually decomposed into subproblems in specific disciplines. As a result, 
design is generally done in a team composed of different specialists. Decomposition 
over disciplines also effects the outcome of the design process, because typically the 
resulting design consists of a collection of subsystems which provide functionality in a 
single domain and have relatively little mutual interaction. In other words, each 
function of the product is largely realized by one specific subsystem or module. Inter–
module linkages have been avoided as much as possible. Finally decomposition over 
disciplines also influences the phasing of the design process, as generally one 
subsystem will be designed after the other. In the case of product design of a 
controlled electro–mechanical system, the standard pattern is to design first the 
mechanical modules (which might be viewed as the skeletal and muscular 
subsystems), then the electronic parts (the sensory– and nervous subsystems), and 
finally the control modules (the brains). 

From the above we may conclude that the decomposition of design problems over 
phases of the product life cycle and over problem domains overcomes their 
complexity. However, it has had three major, unfavorable effects on design: 
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– it has stimulated designers to only regard the solutions they propose from the 
perspective of the subproblems they are concerned with, and hence to pay too little 
attention to whether the solutions are satisfactorily at the overall problem level. 

– it has turned the design process into a sequence of quite separate phases, whereby 
the design is passed from one phase to the following in a manner that can best be 
characterized as ‘throwing over the wall’. 

– it has led to designs consisting of subsystems providing functionality in single 
domains and having little mutual interaction, which often implies that the resulting 
design is over–complex and not optimal. 

Due to the nature of evolution, designers are continually faced with increasing 
demands both on the products they are designing and on their own productivity. In 
terms of the previous section, they are required to come up with new designs which 
have more functionality, higher performance and better reliability (i.e. better quality) 
for less cost and in less time. These demands have become so high that the traditional 
approach to design is no longer sufficient. The sequence of design phases causes the 
innovation time to be too long and the quality to be hard to guarantee. The specialized 
subsystems are a barrier to the improvement of quality if costs are not to be increased. 
Two new approaches have been proposed to change this. 

Concurrent engineering 
Concurrent engineering (also referred to as simultaneous engineering) is “a systematic 
approach to the integrated, concurrent design of products and their related processes, 
including manufacture and support. This approach is intended to cause the developers, 
from the outset, to consider all elements of the product life cycle from concept through 
disposal, including quality, cost, schedule, and user requirements” (IDA, 1988). One 
might say that this approach emphasizes that the decomposition of design problems 
over the product life cycle is useful, but that the design phases which result should be 
carried out more or less concurrently instead of sequentially. Many success stories 
about the merits of this design approach have appeared in literature, especially from 
the side of the automotive industry (Clark and Fujimoto, 1991). These merits generally 
are impressive reduction of innovation time and at the same time improvement of the 
quality of new products. 

Mechatronics 
A commonly used definition of mechatronics is “a synergetic combination of precision 
mechanical engineering, electronic control and systems thinking in the design of 
products and manufacturing processes” (IRDAC, 1986). Buur (1990) proposed a more 
concise definition: mechatronics is “a technology which combines mechanics with 
electronics and information technology to form both functional interaction and spatial 
integration in components, modules, products and systems”. Mechatronics can thus be 
viewed as an approach which recognizes the usefulness of decomposition of design 
problems over disciplines, but which emphasizes that this should not lead to domain–
specific subsystems with minimal functional interaction and spatial integration. 
Benefits claimed to result from use of a mechatronic design approach are mainly the 
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increase of functionality (more intelligence and flexibility), of performance and of 
reliability without increasing costs. 

Both concurrent engineering and mechatronics advocate a systems point of view in 
design. They are similar in nature and stress the need for integration within the design 
process. Yet, they are more or less ‘orthogonal’, as one concentrates on the product 
life cycle, while the other is mainly concerned with the problem domain. In other 
words, concurrent engineering and mechatronics are complementary design 
approaches to stimulate ‘integrated problem solving’ (Clark and Fujimoto, 1991) in 
the design process. Based on their study of American, Japanese and European 
automobile companies, Clark and Fujimoto (1991) concluded that integration of 
problem solving has a direct bearing on a number of measures, e.g., innovation time 
and total product quality. Hence, concurrent engineering and mechatronics both will 
improve the design process and can be naturally applied in combination. 

Considering their similarities, it is not surprising to see that the two approaches are 
opposed by the same kinds of problems when applied. Two different types of 
problems can be observed. 

Communication problems. 
Integrated problem solving requires better cooperation and coordination among the 
members of the design team (Takeuchi and Nonaka, 1986). Their collaboration is to be 
realized through communication. However, members are generally individuals 
separated by discipline and/or functional responsibility. Their communication is made 
difficult due to a lack of ‘shared meaning’ (Konda et al., 1992). Simply stated, people 
just do not speak the same language or do not attribute the same value to a common 
word (figure 1.1). These problems were also present in the traditional way of 
designing, but they are much more dominant in the new situation. 

Learning problems. 
During design a circular dependency is present. Finding a good solution requires an 
understanding of the problem; conversely, problem understanding can almost only be 
gained throughout the solution process (figure 1.2). This “design process paradox” can 
only be solved by trying to reduce the lack of knowledge as much as possible early in 
the process. In other words, one needs to learn about the design problem and the 
proposed solution as soon as possible. Compared to the traditional approach, the need 
for learning is both more serious and more difficult to satisfy when applying an 
integrated problem solving approach. 
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FIGURE 1.1   Lack of shared meaning 

To successfully apply an integrated problem solving approach, the communication– 
and learning problems need to be tackled. This can be done in three different ways: 
through organizational measures, by means of education and by means of 
technological solutions.  

Japanese companies have proved that organizational means can enhance integrated 
problem solving. This means generally to modify organizational structures with the 
aim to increase cooperative behavior, to optimize organizational transfer of learning, 
and to stimulate self–organising project teams (Takeuchi and Nonaka, 1986; Buur, 
1990; Clark and Fujimoto, 1991). Education of people involved in designing might be 
another way to overcome the problems. This education should be focused towards 
improving communication by means of ‘generalistic’ training and towards resolving 
the design paradox by experimenting with problem solving under uncertainty. 
Technological solutions, finally, can also be implemented. These technological 
solutions involve the development of support, i.e. tools, techniques and 
methodologies, that can help to prevent or to deal with the communication problems 
and the design paradox. 

Like others (Konda et al., 1992; Buur, 1990) we believe that none of the indicated 
solutions alone will be effective, but need to be accompanied by the others. However, 
in this investigation we will only consider technological issues of the problems 
mentioned above. Both organizational and educational matters are beyond the scope of 
this thesis. 
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FIGURE 1.2  The design process paradox (adapted from Ullman (1992), figure 1.8) 

1.3 Approach and aims 

For synthesizing good solutions a deep understanding of the problem is required. 
Therefore, a theoretical investigation of the design of engineering systems is needed. 
On basis of this investigation, an analysis of the problems mentioned above can be 
given. It will be shown that a major cause of the problems is the lack of proper support 
for the conceptual design task, i.e. the part of the process where it is roughly decided 
how the product will function and what it will look like (Ullman, 1992).  

Development of support requires a normalization of the design process. However, 
conceptual design is often regarded as hard, or maybe even impossible, to formalize, 
because it is an art form that requires creativity and expertise. On one hand, we agree 
with this view in that we think it is currently not possible to completely formalize this 
process, i.e., to automate it. On the other hand, we believe (and intend to show in this 
thesis) that parts of it can well be formalized. A major problem is to find out which 
parts can and should be formalized and automated. This selection has to be done with 
great care due to the nature of the conceptual design task. When some kind of support 
system is not properly set up, i.e., when it ‘over–’ or ‘underformalizes’, it will be of no 
help to a designer. Moreover, it may well influence the process in a negative way, as it 
frustrates creativity. 

We think that a language–based approach is required. The importance of languages in 
design is well known (Cross, 1989; Dasgupta, 1991; Ullman, 1992). Furthermore, both 
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communication and learning, which are central to the problems discussed here, 
critically depend on the use of (the proper) language (Popper, 1972).  

Based on the foregoing, we can conclude that the aims of this thesis will be the 
following. 

1 Analyze the design process and formulate a model of design that can help to 
understand the design process and develop proper support for it. 

2 Formalize technological concepts which will support the conceptual design of 
controlled electro–mechanical systems. 

3 Evaluate the aforementioned model of design and technological concepts by 
(further) developing a prototype Computer Aided Engineering environment. 

1.4 Thesis overview 

Chapter 2 starts with a description of the design process by means of a model of 
designing. Next, an analysis is given of the problems that are present when using an 
integrated problem solving approach in designing. It follows that the lack of proper 
support is largely due to the fact that the modeling techniques and means for the 
conceptual design task have not been powerful enough. Two concepts are proposed to 
improve this: multiple model formulations and polymorphic modeling. 

In chapter 3, the concept of multiple model formulations is described. The idea of this 
concept is to enable one model to be formulated in multiple ways, i.e., using multiple 
‘languages’. First, characteristics of the languages that are applied during conceptual 
design are identified. On the basis of this, a set of formal modeling languages is 
selected for the design problems of interest here. Next, a system set–up to support 
multiple model formulations in a CAE system is proposed.  

The system set–up derived in chapter 3 incorporates conversions between the different 
formulations. The design of conversion algorithms for two model formulations, 
namely iconic diagrams and bond graphs, is discussed chapter 4. Applications of the 
conversion algorithms are shown. 

Polymorphic modeling, which is the topic of chapter 5, relates to the flexibility that 
designers require of model descriptions. It is shown that current modeling systems do 
not offer this flexibility, due to the way in which classification of subsystems is 
realized in these systems. A proposition is put forward on how to improve this. It is 
concluded that polymorphic modeling is powerful because it supports the evolutionary 
nature of design by facilitating the variation of detail of a model and the creation of 
alternative design solutions. Examples of its usage are included to illustrate this. 

Chapter 6 presents the system (called MAX) in which the concepts of multiple model 
formulations and polymorphic modeling have been implemented. The chapter includes 
a case study to demonstrate the functionality of the system. The theory and concepts  
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which have been discussed in the previous chapters are evaluated on basis of this. It is 
shown that the system is indeed able to support the modeling of the design during the 
conceptual design task. 

Overall conclusions are listed in chapter 7, together with opportunities for further 
research and possibilities to extend and improve MAX.  





Chapter 2 

Understanding the design process 

2.1 Introduction 

An important way to deal with the difficulties of engineering design is to provide good 
support for the designers. Two basic criteria can be formulated for qualifying design 
support as ‘good’: 

– it must aid the designer with a task of genuine concern 
– it must not introduce more (or more difficult) problems than those it solves 

Information technology enables sophisticated support by means of computer–based 
support systems. However, a literature review by John (1988) reveals that current 
systems do not meet the above criteria. The systems suffer from serious deficiencies 
that may be summarized as: 

– poor support of relevant design functions and phases 
– support is not tailored to the use by a designer 
– foundations of the systems are not explicit or even wrong. 

A main cause for these deficiencies is that such systems are being developed without 
sufficient understanding and regard of the actual design process (Pugh, 1984). For 
example, conventional ‘Computer Aided Design’ (CAD) systems provide support to 
the mechanical designer in making the final drawing of the design. But few designers 
will consider this task to be problematic while designing. Even more, if designed 
badly, they limit the designer’s freedom and negatively influence the thinking process. 
On the other hand, CAD systems do provide good support for the maintenance and 
reuse of final drawings of designed artifacts. Therefore, one might say that 
conventional CAD systems are based on the misconception that designing mainly 
involves making and maintaining a final drawing of the designed artifact. To stress 
this, these systems are sometimes referred to as Computer Aided Drafting systems. 
The term ‘Computer Aided Engineering’ (CAE) systems has been introduced for 
systems specifically aiming at the support of other design tasks as well. We use the 
latter term to avoid confusion. 

So insight into the design process is important for developing good CAE systems. 
Insight can be gained by formally describing the design process, i.e. by modeling 
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design. Our research hypothesis is that better support results when systems are 
developed on the basis of such models. The use of this approach is not unique; it 
seems to be the motivation for much of the research on the design process 
(Finger and Dixon, 1989a).  

To provide insight, a model of designing should “explain how the design process 
unfolds” and “be able to predict future successes and failures” (Ullman et al., 1988). 
Therefore, a superficial description of observations of design processes will not 
suffice. Instead, a ‘deep’ model of designing is needed. A deep model identifies 
structure and separates important issues from less important ones. The model of 
designing we seek will be applied in the development of (improved) design support. 
Based on the model it should thus be possible to: 

1 explain the applicability of design support on the basis of characteristic features of 
the process. 

2 predict what kind of support would increase chances for successful completion of 
the process.  

In this chapter, a model of designing which meets these demands is presented, and 
lacking support is identified. Note that if we speak about a model in this chapter, we 
mean a model of designing, unless explicitly stated otherwise. 

We first characterize engineering design in the next section. Based on this, existing 
models of designing are reviewed in section 2.3. It is shown that these models are 
inadequate; modifications and extensions to be incorporated in a new model of 
designing are proposed. The new model is introduced in section 2.4 in three steps. 
First, we define the context in terms of a world view. Next, we identify the main 
structure of the model. Finally, we add detail to the parts contained in the structure, 
thereby increasing the amount of information captured by the model. The resultant 
model is evaluated in section 2.5, and is used to identify lacking support in section 2.6. 
Section 2.7 summarizes the conclusions. 

2.2 Characterizing design 

A single–sentence definition of designing is not sufficient to capture all of its relevant 
aspects. A more fruitful way of stating what constitutes design is to identify the 
fundamental characteristics of design, and use these as a means for understanding it at 
a deeper and less intuitive level (Dasgupta, 1991). Three characteristics are crucial. 

Design is context dependent 
“There is growing evidence that context–free universal methods are most often 
inapplicable and inappropriate in design practice” (Konda et al., 1992).  In other words, 
the context within which designing takes place is of critical importance. For example, 
the social context influences the design process, because social factors like negotiation 
mostly determine the outcome of major decisions during the process, thereby changing 
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the very character of the solution space. Also the technical context has influence, as 
suitability of support in the form of tools and (formal) methods depends on the 
domains of application. The problem context as well is crucial, as the requirements for 
the design are linked with the non–static environment in which design takes place. 

Design problems are ill–structured and incomplete 
The majority of design problems are ill–structured problems (Simon, 1973; Jones, 
1980; Cross, 1989). Ill–structured problems have a problem setting that is not 
definitive, both the initial state and the goal are not stable nor verifiable. Also, such a 
problem often appears to be represented improperly in the course of the solution 
process, because the representation obscures the real issue, does not match with 
relevant knowledge or excludes optional solutions. This fact is easily understood if one 
realizes that specifications are generally composed on the basis of known ways to 
approach a problem. Design problems are usually incomplete at the start of the process 
as well, and possibly inconsistent. This is due to the complexity of the problem context 
and the lack of understanding of the problem area. Ill–structured and incomplete 
problems are dealt with by proposing solutions before the problem is well defined and 
understood. In other words, proposing solutions is a means to understand and 
(re)formulate the problem. However, multiple solutions are often proposed. These 
solutions might be considered equally valid initially. Only later are solutions evaluated 
to be preferable or invalid, if at all this will become clear. As a result of all this, there 
is no clear distinction between problem formulation and problem solution. Therefore, 
the process of designing does in general not only involve problem solving, but 
problem stating as well; making and revising the problem specification forms an 
essential part of designing. Consequently, both problem statement and solutions need 
to be captured integratedly in the design object, for example in the form of a set of 
constraints (Simon, 1981). 

Design involves a time–constrained initiation of change 
Design is concerned with describing an artifact that can adapt the situation at the outset 
to a more suitable one, i.e. it initiates a change (Jones, 1980; Simon, 1981). This 
implies that the question of ‘what ought to be’ is addressed with more emphasis than 
the question of ‘what is’. Furthermore, the required change generally has to be realized 
within time constraints. As a result, the method of experimentation as common in 
natural sciences is mostly inapplicable, because time is lacking or it concerns a “one–
off” design problem, such as a satellite. This is why things like ‘experience’ and 
‘intuition’ generally play a major role in the design of new artifacts. 

Simon (1973) shows that these three characteristics imply that designing involves a 
continual evaluation of whether the problem as formulated and the solution that is 
pursued still have relevance in the “real world outside”, and the modification of the 
design problem accordingly. He summarizes this as “the elusiveness of structure”. 
Hence, due to its characteristics, design has to be viewed as a contextually situated, 
evolutionary process. The evolution takes place on two levels. On the one hand the set 
of descriptions specifying requirements and features of the artifact being designed (i.e. 
the design object) evolves during designing. On the other hand the knowledge about 
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the design problem and how it can be solved (i.e. the design knowledge) evolves, 
because the understanding and experience of the designers involved in the design 
process grows. Both of these evolutions generally do not start from scratch at the 
beginning of the design process, and also probably will not stop after it finishes. The 
context is important, because it will have a considerable influence on the course of the 
evolutions.  

To function well, design support should be adapted as much as possible to the above 
mentioned characteristics. Therefore the model of designing which we seek should 
explain: 

– how the context within which designing takes place influences the process 
– how the evolution of the design object and design knowledge takes place. 

2.3 Existing models of designing 

Many models of designing have been proposed in the past decades. Overviews of 
well–known models can be found in, for example, Finger and Dixon (1989a) and 
Dasgupta (1991). Because of the large number of models, we will discuss existing 
models on the basis of a taxonomy (or classification scheme), instead of treating them 
individually.  

A rather complete taxonomy of models of designing has been proposed by 
Konda et al. (1992). Their taxonomy is an improved and extended update of the one 
described by Roozenburg and Cross (1991). The taxonomy has the form of a tree, in 
which the prime division is between models of designing that focus on the ‘design 
process’ versus models of designing that focus on the ‘design artifact’. At the second 
level, ‘descriptive | declarative’ models are separated from ‘prescriptive | procedural’ 
models. For descriptive process–focused models finally a distinction is made between 
‘individual’ and ‘social’ models. Though interesting, there are two main problems with 
this taxonomy.  

Firstly, a tree–like shape is not proper for a taxonomy. One reason for this is that a tree 
forces one to rank the aspects according to which the taxonomy is built up from most 
important to least important, i.e. it forms a hierarchy. This is not adequate; the prime 
division in the taxonomy of Konda et al. (1992) is not more important than the second 
one. A second reason is that a tree–shape does not enforce a systematic classification. 
Sub–divisions of different branches do not have to be based on the same aspect. This 
is unwanted for a taxonomy, as it prevents the identification of unfilled areas and as it 
makes comparison of models in different branches difficult. It is more appropriate to 
use a more–dimensional matrix representation than a tree–like shape for a taxonomy. 

The second problem is that we do not agree with the aspects on which the taxonomy is 
based. The selected aspects are neither clearly described, nor easily identified 
(process–focused versus artifact–focused) nor do they cover all models (descriptive 
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and prescriptive). For these reasons, a new taxonomy will be constructed hereafter, 
inspired by the taxonomy of Konda et al. (1992). 

The next three aspects can be used for categorizing models of designing: 

1 Purpose  
The purpose for which a model is created is an essential characteristic, as it has a 
major influence on both its contents and its representation. According to Ullman (1989
), three different categories of models can be distinguished:  
– descriptive models of designing, intended to represent what actually is done during 

design. 
– prescriptive models of designing, intended to represent how design should be 

done. 
– computational models of designing, intended to represent how design could 

(partially) be done using machine computation. 

2 Modeling approach 
In principle, two different approaches to modeling can be distinguished (Booch, 1991; 
De Vries and Breedveld, 1992). One can use:  
– a process oriented approach, i.e. denote at the highest level the operations (steps, 

procedures) which are distinguishable in the overall design process.  
– an object oriented approach, i.e. denote which components (parts, units) need to be 

active for realizing the design process. 

3 Time character 
In principle, time can be captured in a model in two ways: 
– the elements of the model (objects or processes) are invoked sequentially. This 

implies that the relations in the structure of the model, if explicitly present, 
incorporate a time sequence. The structure thus depicts a kind of planning. Such a 
model is serial of nature. 

– the elements of the model can be active simultaneously. In such models, the 
structure incorporates co–existing relations, which do not suggest a global plan. 
Rather, they describe a framework or environment within which designing takes 
place. Models of this kind can be characterized as concurrent. 

This leads to a taxonomy as depicted in figure 2.1. We have made no effort to 
categorize many or all known models. Merely, we have chosen one well known 
example for each category that is distinguished. 

The aim of this chapter is to present a model of designing that explains the 
applicability of design support and predicts what kind of support would further 
enhance the design process. The question in which category of the taxonomy the most 
suitable model for this purpose is found can now be answered. 
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FIGURE 2.1 Taxonomy of existing models of designing 
[1] Ullman et al. (1988) [7] Tomiyama et al. (1989) 
[2] Suh (1990) [8] Dasgupta (1991) 
[3] Tomiyama and Yoshikawa (1987) [9] Dijkstra (1976) 
[4] McCall (1986) [10] Darke (1979) 
[5] Cross (1989) [11] Asimow (1962) 
[6] Mullins and Rinderle (1991) [12] Jain and Agogino (1990) 

A descriptive model of designing is required, because we want to explain features of 
the design process. Furthermore, an object oriented approach is preferable. The reason 
for this is that components and relations between components vary less for contextual 
differences than operations / procedures do. To see this, consider the metaphor of a 
play. When something unexpected takes place in a play, the script (i.e. the ‘process’ 
model) immediately fails, because the lines (the steps of the procedure) are no longer 
appropriate. But if the unexpected event is not too serious, the scene (the ‘object’ 
model) continues, for the actors (i.e. the objects) are able to adapt their role. In the same 
way, an object oriented approach leads to models of designing that are more robust to  
context–dependency. Finally, the time character should be concurrent, as a framework 
is needed that predicts how support should function rather than a planning when 
support is needed. Summarizing: a descriptive, object–oriented and concurrent model 
of the designing is best suited for explaining the applicability of design support and 
predicting what kind of support can further enhance the design process. The models 
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that fall in the other categories may have provided significant contributions to the 
field, but will not be considered hereafter, for the above reasons. 

The TEA model 
A well–known descriptive, object oriented and concurrent model of designing is the 
TEA model (Task/Episode Accumulation model) by Ullman et al. (1988). The TEA 
model explains many aspects of the design process, and it provides significant insight 
into the way (mechanical) designs are developed. Therefore, it will be outlined shortly 
hereafter. For a more detailed discussion, see the reference. 

The TEA model is a model of non–routine designing, developed on the basis of an 
empirical study on the process of mechanical design. The fundamental components are 
the design state and the design operators. The design state contains all information 
about the artifact under design. The representation of the design state has one critical 
property, which is its level of abstraction. This level of abstraction is characterized by 
what it explicitly describes and by what it omits. In the TEA model, the continuum of 
this property has been divided into three levels: abstract, intermediate and concrete. 
Furthermore, different types of media for the representation of the design state are 
distinguished: “verbal | textual”, “visual”, and “physical”.  

Design operators are primitive information processes that modify the design state, i.e. 
they are ‘applied to’ the design state. The TEA model contains ten operators: “select”, 
“create”, “simulate”, “calculate”, “compare”, “accept”, “reject”, “suspend”, “patch and 
refine”. Thus, in the TEA model the design is accumulated gradually by the 
incremental contributions of each operator to the design state.  

A meaningful sequence of operator applications that addresses some primitive goal is 
called an episode in the model. In an episode, the decision about what operator to 
apply next is guided by heuristic rules, of which a set of thirteen is identified. In other 
words, the design process is controlled locally, within an episode. Alternative designs 
are only considered within episodes; by the time an episode is completed, one of the 
alternatives will have been accepted into the design state. After completion, the 
designer tackles another, closely related primitive goal in a new episode. So to 
accomplish a design, the design engineer performs a (large) series of episodes. Six 
different types of episodes have been distinguished: “assimilate”, “document”, “plan”, 
“repair”, “specify”, and “verify”. A non-complete set of eight rules that govern the 
sequence of episodes is given.  

A collection of related primitive goals (and thus of related episodes) is called a task. 
Generally, a task can be described as a goal of larger scope. Four types of tasks are 
defined: “conceptual design”, “layout design”, “detail design”, and “catalog selection”. 
From the empirical study it followed that (contrary to what many models of designing 
propose) design tasks do not match design phases, i.e. that task–related episodes are 
not performed in a linear sequence. 
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The goals of the different tasks altogether make up the main goal comprising the 
satisfaction of the given design requirements. Thus a three–level goal structure is 
obtained: primitive goals at the episode level, sub–goals at the task level and the main 
goal at the design process level. Herewith we conclude our outline of the TEA model. 

Application of the TEA model to the development of design support is not 
straightforward. This has a number of reasons: 

1 The design state and the design operators have been characterized independently. 
However, there is a constraining relation between the two: the design operators 
modify the design state. This implies that each operator must modify at least one 
feature of the design state, and vice versa, for each feature of the design state that 
varies during the design process there must be at least one operator that realizes 
this. Therefore, the independent characterization that has been done is not allowed; 
inconsistencies may arise in the model.  

2 The primary focus of the model is on the episodes, operators and their control. The 
evolution of design state that results from this has not been worked out in detail. 
The use of (automated) support during the design process will (by definition) have 
considerable consequences for this evolution. Evaluation of these consequences is 
hard in the TEA model, while this is a major reason for using a design process 
model. 

3 The TEA model has been set up specifically for the mechanical design process, not 
considering group design. In the model, no separate context–determined part and 
context–free part are distinguished. This is unfortunate, as it makes reuse of the 
model in a different context harder. It is also unnecessary, as the model has the 
potential to easily incorporate this separation and maintain a large context–free 
part. 

Therefore, a new model of designing is needed. In this model, the basic features of the 
TEA model, being the tasks, episodes and operators, should be maintained. To 
overcome the above mentioned problems, these should be combined with ideas put 
forward in other models of designing: 

– embed the model in a world view in the spirit of Popper (1972) and 
Tomiyama and Yoshikawa (1987) in order to clarify context–dependency.  

– characterize the main components analogously to the way it is done in the 
Comprehensive Design Process Model as proposed by Rivero (1977), see also 
David (1987). In this way, inconsistencies will be prevented and the evolutionary 
aspect will become naturally incorporated. 

The new model is presented in the succeeding sections. It is a further elaborated and 
reformulated version of previous publications (De Vries et al., 1991; De Vries et al., 
1993).  
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2.4 Proposition for a new model of designing 

2.4.1 World view 

Designing takes place in an environment which influences the process, it is 
contextually situated. Therefore, it is necessary to clarify its context. The context of 
our model of designing will be defined by means of a “world view” similar to the ones 
proposed by Popper (1972) and by Tomiyama and Yoshikawa (1987). Three worlds 
are considered (figure 2.2): the real world R, the symbolic world S and the conceptual 
world C.  

The most obvious world is the real world R. In this world ‘entities’ exist and show a 
certain ‘activity’. The crucial feature of everything which exists in this world is that it 
can be detected by anyone who is able to perceive. Thus people, their behavior and 
their physical environment are part of the real world. Elements of this world are 
depicted by shaded rounded rectangles. (Note that ‘activity’ is meant in a restricted 
sense here, namely as ‘observable action’.) 

The symbolic world S contains ‘descriptions’ of parts of the other two worlds in the 
form of models, laws and theories. By means of language, elements of the symbolic 
world symbolize (i.e. refer to) entities or concepts. A language adds semantics (i.e. a 
reference) to the carrier of the description, the ‘medium’. The content of a description 
is the same for every observer, although the interpretation might be different. 
Consequently, the term objective can be used for a description. For example, the 
content of this paper is a part of the symbolic world. A reader who knows the English 
language is able to recognize (observe) the content. To someone who cannot read, this 
is only a piece of paper with meaningless curves. Stated otherwise, the semantics are 
not apparent to this person and only the medium, which is part of the real world, 
remains. Everybody who can read this thesis sees the same words, so the content of it 
can be observed objectively. In the figures, descriptions are depicted as white 
rectangles.  

The conceptual world C resides inside the mind of a human being. Every human being 
has a private conceptual world. Elements of this world cannot be perceived by anyone 
else; it is a subjective world. In this world ‘concepts’ of both the other worlds reside. 
They are formed by interpretation of observations (experience) or by assimilation of 
concepts already present (thinking). Concepts may drive activities and as such cause a 
behavior (in R), and concepts can be communicated by means of description (via S). 
Sticking to the same example, the reader interprets the content of this paper and thus 
forms a subjective concept of this description, the message. He relates this to the 
concepts he already had about the subject. Maybe he will conclude that the proposed 
ideas are totally wrong, which then is a new concept formed by inference. Nobody else 
is able to observe this, unless the concept is described in one way or another or causes  
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a particular, recognizable behavior. Concepts will be depicted as shaded ellipses from 
now on. 

  

FIGURE 2.2 World view 

It can be noted that in general it will always require an activity to form a concept of a 
description (i.e. observing) or to turn a concept into a description (i.e. describe). Hence, 
the conceptual world and the symbolic world do not have a mutual interface; the real 
world is always in between. The ordering of the worlds as depicted in figure 2.2 is 
conform this. The fact that the conceptual world is at the top and the symbolic world is 
at the bottom does not have a special reason; it could equally well have been reversibly 
or from left to right. 

2.4.2 Basic model 

In terms of the above world view, the major goal of the design process is to transform 
some concept of a need (in C) into a description of an artifact (in S) which can actually 
be manufactured into a product (in R). Consider first designing at a simple and high 
level, in particular an individual designer working on a design problem without any 
sophisticated support (figure 2.3). Then three components (i.e., ‘active parts’) can be 
distinguished that naturally correspond with the world view described above: the 
design object, the design process and design knowledge. 
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FIGURE 2.3 Designing 

The design object is the symbolic world element which is generated while designing. 
In other words, it is the collection of descriptions that specify the artifact under design. 
As was noted before, the design object mostly evolves from a previous design, through 
a modified design specification to a complete design at the end. This evolution results 
from the real world part of designing, the activities performed during the design 
process. The activities are initiated and controlled, i.e. activated, by design knowledge. 
In figure 2.3, the activities of the designer are initiated in the mind, and thus all the 
design knowledge is part of the conceptual world. However, design knowledge may 
also be available in the form of descriptions, i.e. as part of the symbolic world. Two 
distinct parts of design knowledge can thus be separated: conceptual design knowledge 
and described design knowledge.  

We may view a human, and thus a designer, as a goal seeking, information processing 
system (Newell and Simon, 1972). The condition of any goal seeking system is that it 
is connected to its environment through two channels: the afferent, sensory channel 
through which it receives information about the environment, and the efferent, motor 
channel through which it acts on the environment (Simon, 1981). Therefore, we can 
say that within the design process, the designer acts in two different ways: 

– as an observer, with the aim to receive information 
– as a descriptor, with the aim to produce information 

Another refinement to be made is concerning the conceptual design knowledge. 
Conceptual knowledge in general, so also conceptual design knowledge, is located in 
two significantly different parts of the mind: the subconscious part of the mind 
contains the knowledge that is not explicitly and/or actively available, but ‘resides in 
the background’. This part of the mind has seemingly infinite storage capacity, but has 
relatively slow processing speed. The conscious part of the mind on the other hand has 
a limited capacity of typically seven “chunks” (Miller, 1956), but is very fast. The 
knowledge located here is active and/or readily available.  
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Figure 2.4 gives a schematic overview of the main components of designing that have 
been identified. 

 

FIGURE 2.4 Main components of the model of designing 

Interactions between the main components of the model are event–based, and will be 
incorporated in the model in the form of arrows. The following main interactions are 
present. 

The observer observes the design object and described design knowledge through their 
representations. The interpretation of these observations leads to new concepts in the 
conscious part of the mind. Also through assimilation of subconscious design 
knowledge, new concepts become available in the conscious part of the mind. By 
means of activation, conscious knowledge initiates and controls the activities of the 
descriptor and the observer. The descriptor finally changes the collection of 
descriptions that specify the artifact under design, i.e. it causes a modification of the 
design object. Figure 2.5 depicts the interactions between the main components of 
designing. 

In figure 2.5, only interactions between the main components of designing have been 
incorporated. However, also interactions will take place between the components of 
designing and the environment in which designing takes place. The following events 
are present: 
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FIGURE 2.5 Interactions between the main components 

– assimilation of subconscious general knowledge, leading to new subconscious 
design concepts. 

– occurrences of entities or activities not part of the design process will be observed 
by the observer. 

– representations of descriptions not contained in the design object or described 
design knowledge will be observed by the observer. 

When these interactions are added to the model, figure 2.6 is obtained. For the simple 
and high level at which designing is discussed so far, this figure gives a complete 
description, and thus will be called the initial model of designing. 

Two adaptations are needed to obtain a more relevant model of designing. Firstly, 
designing is almost always a group activity. All participants of the design group are 
working on (different parts of) the same design object, and in principle have access to 
the same sources of described design knowledge. But cooperation of multiple 
designers implies that there are multiple, independent observers and descriptors. Also 
it follows that there are multiple instances of the conceptual world, one for each 
designer. There is no way to be sure that conceptual knowledge about a certain matter 
is equivalent for two persons, although usually this will be likely to some degree. In 
other words, the outcome of the interpretation of an observation done by somebody is 
not controllable by someone else. Using the terminology of Konda et al. (1992): one 
can never guarantee shared meaning, even in the presence of shared memory (shared 
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described knowledge); one can at most expect it. Although this fact seems undesirable, 
it also has positive effects, as we will see later on. In fact it explains why a group is 
generally more creative than are individuals.  

 

FIGURE 2.6 Initial model of designing 

The second adaptation to be made is concerned with automated design. Automation 
requires that the knowledge needed for driving an activity is explicitly described, 
because only an explicitly formulated task can be executed by a computer. Full 
automation of design tasks thus requires that design knowledge is completely available 
in the symbolic world, which is generally not true. Therefore, we conclude that 
automated design is currently impossible without strongly limiting the problem 
domain. A more realistic view is to consider partial automation of designing. Activities 
which are not well understood and for which the driving knowledge is not 
(completely) known, still require human input.  

With the current state of the art it is not possible to completely describe the knowledge 
that initiates and controls the observer. The underlying cognitive process of 
interpretation and assimilation (“creativity”) is not well understood. Therefore it is not 
useful to consider automation of observation actions. As a consequence, the described 
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knowledge in a partially automated design system will not expand automatically: the 
system is not self–learning in a general sense.  

The design actions are partly well understood and formalized. They can thus be 
separated into two groups: automated design actions, performed by design automatons 
and completely driven by described design knowledge, and manual design actions, 
(partly) driven by conceptual design knowledge and performed by a descriptor as 
before. The question of to which degree automation can and should be done is dealt 
with later in this chapter. 

Thus to make the initial model of designing more realistic, we should include in the 
model the design automatons, and multiple instances of the descriptor, of the observer 
and of the mind. Figure 2.7 depicts the adapted model. For reasons of clarity, we have 
chosen to depict the situation for the smallest group possible, namely two designers. 
Expansion to larger groups does not introduce new relations, although it does lead to 
new features of the overall process (like ‘live lock’). We will refer to this figure as the 
basic model of designing. 

 

FIGURE 2.7 Basic model of designing 
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2.4.3 Adding structure 

We can get a more detailed model of designing by incorporating additional features of 
the different objects contained in the model. As has been noted before, we cannot just 
consider each object separately, for there are constraining relations between them and 
this approach thus could lead to inconsistencies. Instead, we should select one object 
which is the starting point for a further characterization, and propagate the obtained 
features through the rest of the model. We propose to use the design object for this 
purpose, for the following reasons: 

– the design object is part of the symbolic world. This world can be observed more 
objectively than the other two worlds, simply because it is based on a formalism. 
Due to this, the justification and verification of a conjectured characterization can 
be done more objectively in this world than in the other ones. 

– models and abstractions provide the framework within which design refinements 
are done and thereby constrain and direct the outcome of the design process 
(Hoover et al., 1991). Therefore, it is logical to extend the model through the part 
containing the models and abstractions, i.e. the design object.  

– the design object is the part of the above model that can best be characterized 
while not making strong assumptions on the problem context. Both the design 
process and design knowledge are more dependent of the class of design problems 
that is considered, the domain of application, etc. 

So the basic model of designing is expanded by characterizing the design object. To do 
so, we first have to elaborate a bit on what the design object actually is. Like Ward 
(1989), we believe that the design object is not a collection of descriptions of single 
artifacts, but instead defines sets of equivalent artifacts. Reasoning in terms of sets is 
the major way designers deal with the large solution space faced during designing. 
Using equivalence sets, designers can reason about many individual artifacts in a very 
economical way. They only have to consider the features that define an equivalence 
set, i.e. that all artifacts that are a member of the set have in common. Because they 
use set–based descriptions, they do not have to think of other features, which would 
distract them of the problem. Set–based reasoning is their method to not over–
constrain the solution space, while still having reasonably small amounts of 
information to deal with. The evolution of the design object then is the continuous 
modification of the sets that are contained in the design object. This evolution takes 
place by changing the features that define these sets. 

Additional structure for the design object 
Among others, Ullman et al. (1988) have proposed to use the “level of abstraction” as 
the critical property of the design object that varies during designing. However, there 
is no clear characterization of level of abstraction; even more, the label covers more 
than one property, and is thus ambiguous. In his Theory of Domains, Andreasen (1980
) made a better proposition: he separated level of abstraction into “domain” (roughly 
speaking the aspects that are described), degree of detail and attribution of parameters 
(see also Buur, 1990). This proposition will be taken over here, although a different 
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terminology will be used. In addition to Andreasen’s proposal, the amount of different 
solution sets that are incorporated in the design object is also a critical property. In 
conclusion: there are four distinguishable ways in which the features that define the 
sets incorporated in the design object vary: 

– level of concreteness. (This is what Andreasen (1980) called “domains”.) 
Designers consider a limited number of aspects of the design problem at a time. 
They do not attempt to specify what parts it should be made of right away, but first 
treat the problem in less concrete terms like what should it do or how should it 
work. Later on, other aspects such as form features are elaborated, where the 
freedom to define these features is limited so that the design still has the desired 
abstract features, i.e. still belong to the set defined earlier. 

– resolution. The amount of detail taken into account varies independently from the 
level of concreteness. Initially, only main features are regarded. Details which are 
expected to be insignificant or less relevant are only considered later. For example, 
when designing a vehicle and concentrating on the functional level of 
concreteness, the main desired effect is the “transport” function. In addition, a 
function “inform the passengers about the covered distance” may be required. The 
concreteness level is the same, but the scope is different and more issues are 
regarded. As a result the structure of the design object (distinguished features of 
the set and their mutual dependencies) changes during the design process.  

– precision. Descriptions of features of sets will eventually require specification of 
attributes (i.e. quantifiable measures). The term precision is used here for the 
exactness with which these attributes are specified. Designers may deal with the 
design problem in a qualitative sense, for example specify attributes in terms of 
intervals, and only state exact quantities when required. 

– number of alternatives. Designers tend to consider several alternative equivalence 
sets as a solution to a problem. After comparison, they select the most promising 
one. In other words, the design object is not one set of artifacts, but a set of sets of 
artifacts. Based on the foregoing, sets are distinguished in three ways: in content 
(distinguished features), in configuration (dependencies between features), and in 
quantification (parametrization of features). 

The above listed four items, level of concreteness, resolution, precision, and number of 
alternatives, will be called design object characteristics from now on. 

As a means to illustrate the setup of our model of designing and its implications, we 
introduce the ‘design space metaphor’. The basic assumption of this metaphor is that 
the design object needs a four dimensional space to be characterized during all stages 
of designing. This space is referred to as the design space (David, 1987). Because it is 
hard to depict a four–dimensional space in an insightful way, we use a projected 
version of the design space in figures; the level of concreteness, the resolution and the 
precision are depicted along the same axis. Furthermore, we assume in the metaphor 
that the dimensions are orthogonal. 
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Additional structure for the design process 
As apparent in the basic model of designing (figure 2.7), every design action causes a 
modification of the design object. In other words, each design action results in a 
change of at least one of the design object characteristics. Therefore, a design action 
can be viewed as a move of the design object in the design space. This implies that a 
certain design process manifests itself as a trajectory of the design object in the design 
space, see figure 2.8. Several authors have proposed similar views (Andreasen, 1980; 
Tomiyama et al., 1989; Ullman, 1992; David, 1987).  

 

FIGURE 2.8 The design space metaphor 

A natural way to identify elementary design operations is then to consider the set of 
movements along only one dimension. This set is sufficient to cover the complete 
design process, because every part of a trajectory in the design space can be expressed 
as a concurrent movement of a certain magnitude along the separate axes. With the 
proposed four design object characteristics, we get the next set of eight elementary 
design operations: 

– concretize / deconcretize (along concreteness) 
– refine / aggregate (along resolution) 
– fuzzify / defuzzify (along precision) 
– generate / refute (along number–of–alternatives).  

The second kind of action that is performed on the design object is observation. In the 
metaphor, we can interpret this as looking at the moving design object from a certain 
position in the design space. We can imagine that we cannot see the complete space 
and all aspects; we are looking through a pair of binoculars, that limits our view. 
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However, at the same time the binoculars provide ways to control how we are looking 
at the design object; against which background, with which focus and what colors we 
can see. Based on this, we come to the following characterization of observation 
actions: 

– choice of perspective. At least the following perspectives seem to be useful during 
design of controlled electro–mechanical systems: 
• an information processing perspective 
• a signal processing perspective 
• a multi–domain power processing perspective 

– zoom. Within a chosen perspective, this can range from the full design object to a 
particular elementary part. 

– filter. This can vary from observing all information available within the selected 
perspective and zoom to observing a single bit of information within the selected 
perspective and zoom. 

Additional structure for design knowledge 
The design process is activated by design knowledge. Before activation can take place, 
decisions have to be taken what, when and how to activate. This is also done by design 
knowledge. A classification of knowledge reflecting this can be related to the structure 
obtained so far. Assuming that conceptual knowledge and described knowledge can be 
classified in the same way, we can reconsider a general categorization (De Jong, 1986) 
within the framework of the metaphor obtained so far:  

– declarative knowledge concerning entities, facts, theories, conventions, principles, 
etc. This knowledge is the source of data about the part of the design space in 
which the design object moves. 

– procedural knowledge concerning algorithms and heuristics how to perform 
actions. This knowledge is the operating instructions generator.  

– strategic knowledge concerning planning, strategies and the like, to master a 
complex, “large scale” problem setting. This knowledge functions as the (route) 
planner.  

– situational knowledge concerning recognition of the (ir)relevance of other 
knowledge. This forms is the supervisor of the movement of the design object in 
the design space. 

Knowledge is the basis on which planning and control of the design process takes 
place. Based on the above classification of knowledge, we can therefore distinguish 
different modes of designing: 

1 the explorational mode (or opportunistic mode, (French, 1993)); in this mode, 
design activities are driven mainly by design principles, i.e. declarative know–
ledge. Hence, activities are not really planned, but initiated instantaneously, on 
the basis of local information about the state of the design process. The random 
search strategy and the incremental strategy as described by Jones (1980) belong to 
this category. 
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2 the systematic mode; in this case, design activities are planned beforehand on the 
basis of methods, i.e. using procedural knowledge. The linear strategy, cyclic 
strategy and branching strategy that Jones (1980) distinguishes all represent this 
mode. 

3 the problem solving mode; in this situation, actions are driven by a plan that is 
constructed on the basis of a guided search, and that is evaluated and revised at 
specific points in time. In other words, activation is done on the basis of strategic 
knowledge. Jones’ (1980) adaptive strategy fits into this. 

In all modes, situational knowledge is used to clarify how the actual problem fits into 
the design mode. 

2.4.4 Incorporating the TEA model 

The TEA model basically describes information processing taking place in the mind of 
the designer. Therefore, its main elements can be incorporated in our model in the 
following way:  

– the ten operators of the TEA model (select, create, simulate, calculate, compare, 
accept, reject, suspend, patch and refine) are part of the procedural knowledge. 

– the rules that control the application of operators are part of the situational 
knowledge. 

– of the six episodes of the model, five (assimilate, document, repair, specify and 
verify) result in a certain sequence of elementary design actions. Therefore, these 
manifest themselves in the design space as a piece of the trajectory of the design 
object; the piece which was traversed in the duration of the episode (see figure 2.9
). Only one episode (plan) will not activate any elementary design action, and thus 
will not be visible in the design space. This is in accordance with the remark of 
Ullman et al. (1988) that little planning was observed in the experimental data. 

– the rules governing the sequence of episodes are part of the strategic knowledge. 
– the four tasks of the model (conceptual design, layout design, detailed design, 

catalog selection) represent a partitioning of the design space, see figure 2.9.  

The TEA model suggests that mechanical design is done with a mix of the 
explorational and the problem solving mode. 

2.5 Evaluation of the new model 

The model proposed in here explicitly presents an overall view upon designing, which 
helps to prevent inconsistencies. It is a general model for engineering design; we only 
filled in some domain–specific features when incorporating the TEA model. We tried 
to capture “certain forms of invariance as a basis for relatively context independent 
norms” (Konda et al., 1992). In other words, we have described a pattern how context 
might influence the design process and how the evolutions can be given a framework. 
We have done this in a way so that opportunities for support can be evaluated.  
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FIGURE 2.9 The TEA model interpreted in the design space 

When actually using the model in the development of CAE systems for a certain 
domain, specific features need to be added. This entails four (inter–related) aspects: 

– which descriptions and representations are used to cover the relevant part of the 
design space? 

– how are the elementary design actions actually realized? 
– how can observation actions be controlled? 
– what specific knowledge is present? 

In the next section and in the following chapters, when applying the model for the 
development of design support, these questions are answered for a specific application 
area. Hereafter, we first briefly evaluate the generic model obtained so far. This is 
done in three ways: by comparing our model with existing models, by indicating what 
explanation the model provides for the way in which designers cope with the 
difficulties of designing, and by identifying in what way designing can be enhanced. 
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2.5.1 Comparison to existing models 

Like before, we will not treat existing models of designing individually, but instead 
base the comparison on the taxonomy presented in figure 2.1. 

The model presented here has the purpose to be descriptive. Other descriptive models 
generally are within the framework of our model. They mainly differ from our model 
in that they focus on either the design process, or the design object, or design 
knowledge, and work out this part in more detail. Prescriptive models relate to our 
model by proposing a sequence of desirable states or state transitions along which the 
process should unfold. In terms of the design space: they advise on the ‘ideal’ design 
trajectory. Computational models finally describe a sequence of desirable states or 
state transitions that can be covered automatically by means of computation. In other 
words, they provide a trajectory (or a set of trajectories) in the design space that could 
be traversed automatically. 

The approach we followed for our model has been object oriented. Object oriented 
models primarily focus on the states that are or can be present in a system. Process 
oriented models on the other hand mostly emphasize the state transitions that (can) 
take place. In the design space this can be interpreted as a (goal) location or a (next) 
movement respectively. Therefore, also most process oriented models can be related to 
our model. 

Finally, we have classified models of designing in our taxonomy according to their 
time character. In general, it can be observed that the explorational mode of designing 
is worked out in concurrent models, and the systematic mode is elaborated in serial 
models. The problem solving mode is spread over both categories. Hence, we can 
conclude that concurrent models typically specify declarative knowledge, whilst serial 
models will mainly describe procedural knowledge. Either kind of models might 
incorporate strategic and situational knowledge. Both declarative and strategic 
knowledge have been included in our model, so it can be tailored to either time 
character. 

The above leads to the conclusion that the model of designing presented in this chapter 
unifies most of the existing models of designing, even though these mutually seem to 
be quite different. This unifying ability can be understood because of the systematic 
approach followed and because of the fact that it is quite strongly based on the 
“unifying theme” of shared memory (Konda et al., 1992). This does not imply that the 
model presented here can replace existing models, which are mostly more specific and 
serve other purposes. Rather, the strength of this model is that it indicates what parts or 
aspects of designing other models leave out. Therefore, it has something to say about 
the applicability of these models in particular contexts. 

This unification gives confidence that the model is a competent description of the 
design process. The model captures most of its main aspects, and it provides the ability 
to understand it at a deeper and less intuitive level. However, it is incomplete in 
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several ways. Most notable in this respect is that it explains little about how 
observations lead to new concepts, and how conceptual knowledge drives activities. 
To improve this, the conceptual world and the observer part of the model should be 
described in more detail. Interesting work in these directions that fits well within our 
model can be found in Eekels (1973). 

2.5.2 Characteristics revisited 

In section 2.2, we identified three fundamental characteristics of designing: it is 
context dependent, ill–structured and incomplete and it involves a time–constrained 
initiation of change. It is interesting to see what explanation can be given for the way 
in which designers cope with these difficulties on the basis of the model.  

Figure 2.7 suggests that the basic strategy used to solve design problems is the 
following (note: the steps can take place concurrently): 

– formalize (a part of) the concept of the problem 
– modify, using conceptual and/or described knowledge, a (partial) solution 
– observe whether the formalized problem and the formalized solution match the 

actual situation 
– interpret and assimilate design knowledge on the basis of these observations. 

This strategy takes advantage of the fact that a design problem is “ill structured in the 
large, but well structured in the small” (Simon, 1973). In other words, a design 
problem is tackled by separating partial problems from the overall, ill–structured 
problem, idealizing these such that they can be dealt with using formalism and 
available knowledge, and subsequently revising the problem on basis of the obtained 
insight. Two abilities appear to be essential in utilizing this strategy, see figure 2.10: 

1 the path ‘formalize – modification – description – representation – observe’, i.e. 
communication (Cross, 1989; Dasgupta, 1991) 

2 the path ‘observe – interpretation and assimilation – conceptual design 
knowledge’, i.e. learning (Simon, 1973; Ullman, 1992; Van Luenen, 1993). 

The basic model of designing explicitly incorporates this specific form and 
combination of learning and communication. Indeed we believe that these two abilities 
enable the designer to cope with its characteristics. Learning is the means to deal with 
the lack of knowledge due to the intractability of changes, the ill–structuredness and 
incompleteness of design problems and the unpredictable context–dependencies. 
Communication is the way to get feedback on what has been learned, and to distribute 
the work over multiple persons in order to meet the time constraints and to enlarge the 
collective knowledge. Summarizing: learning and communication are essential design 
abilities in order to transfer the ill–structured overall design problem into a set of 
idealized well–structured, solvable subproblems, in a way that is acceptable within the 
context and that will lead to satisfying solutions within time constraints.  
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Obvious difficulties can arise when solving problems with the strategy outlined above 
(Simon, 1973). Interrelations among the various well–structured subproblems are 
likely to be neglected. Solutions to particular subproblems are apt to be disturbed at a 
later stage. Considerations leading to the original solutions are forgotten or remain 
unnoticed. This observation makes it clear why communication and learning are so 
important when applying an integrated design approach: the number of interdependent 
well–structured subproblems and solutions is much larger than with a conventional 
approach. This is due to the fact that with an integrated approach, domain–specific 
subsystems of the design object are no longer functionally and spatially decoupled, 
and design phases are not carried out sequentially anymore. 

 

FIGURE 2.10 The essential design abilities: learning and communication 

The model also helps to explain why practicing designers seem to design in an 
exploratory or problem solving mode, and less in a systematic mode. The systematic 
mode is not very amenable to the strategy outlined above, for it does not comply well 
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with learning and evolution. The fact that iterations are incorporated in systematic 
methods does not really solve this. This can be seen as follows. Iteration implies that 
because of some observed problem one returns to a point in the process that has been 
passed before, and continues in a different way from there. In terms of the design 
space metaphor (figure 2.8), this can be seen as going backwards along the trajectory 
that the design object has passed, and branching off along a different path from some 
previously passed point. This means that one throws away the investment that has 
been made in this part of the trajectory terms of insight. Hence, part of the learning 
process and of the evolutions that have taken place has to be redone. In our view, this 
is not what designers typically do; rather, they try to patch the design object obtained 
so far for the problem that has been noted. In other words, they will try to continue 
along the same trajectory, but probably in a different (and possibly non–goal–directed) 
direction. In that way, they do not need to throw away the insight that has been 
obtained. 

2.5.3 Enhancing design 

From the basic model of designing (figure 2.7), it follows that there are three ways to 
enhance designing:  

1 formalize design knowledge, that is, transfer conceptual design knowledge into 
described design knowledge. In order to be goal–directed and effective, it is useful 
to separate the kind of knowledge that is formalized (i.e. declarative knowledge, 
operational knowledge, situational knowledge or strategic knowledge). This task 
entails what might be called the fundamental question underlying design research: 
in what way does conception take place while designing? 

2 automate activities on the basis of formalized knowledge. This is a separate and 
relevant issue, as automation requires that formalized knowledge can be utilized 
computationally. It means that issues like formal completeness and decidability in 
finite times have to be considered. 

3 incorporate formalized knowledge and automated activities in computer-based 
systems that are helpful in design practice. Making formalized design knowledge 
and automated activities available in a convenient way to many designers is again 
an issue that can best be regarded as separate from the previous two. As follows 
from above, the applicability of design support critically depends on whether or 
not it facilitates the specific learning and communication processes involved in 
designing. This especially holds when an integrated problem solving approach is 
used. Systems that support the design process should be adapted as much as 
possible to the designer’s learning and communication habits. Only in that case it 
is possible to enhance designing. The example of conventional CAD systems 
mentioned in the introduction of this chapter illustrate this. These systems hardly 
help the designer gain insight into characteristics of the artifact to be designed (like 
behavior, appearance, performance etc.) and how these relate to the design 
problem. Above that, the systems require designers to communicate geometrically 
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in terms of lines and points, whereas communication in terms of design features or 
constraints is much more natural to them.  

Simon (1973) proposed a general system structure that is suitable for tackling design 
problems, and that complies well both with our model of designing and with the 
strategy outlined above (see figure 2.11). The system consists of two active parts: 

1 a (set of) problem solver(s) that process well–structured subproblems of the design 
problem. These problem solvers typically take a few arguments as input, and 
produce a relatively small amount of output. 

2 an evaluator that compares the information contained in the immediate problem 
space with (large amounts of) information held in a long term memory, and 
modifies the immediate problem space accordingly. 

 

FIGURE 2.11 Schematic structure of a system for solving ill–structured problems 
(Adapted from Simon (1973)) 

An interesting discussion that has relevance in the light of enhancing design by means 
of computers is going on about which of the parts of this structure can and should be 
computer–based (see for instance Alberts, 1993). It can be concluded that the problem 
solver and the immediate problem space can be well implemented on computers, but 
the way in which this should be done still poses problems. Also, it seems that the long 
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term memory can fruitfully be located inside computer systems, although this is a 
major subject of research. Whether the evaluator can and should be hosted on a 
computer is much more of an issue. 

In our view, humans are (and will be for quite some time) superior to computers when 
it comes to evaluating and modifying the immediate problem space. Two fundamental 
reasons can be given for that: 

– the perceptual mechanisms that humans have enable complex perceptions that 
computers currently by far cannot match. 

– the way in which knowledge is stored in computers (in terms of descriptions, using 
formal languages) inherently implies that this knowledge is limited to a context 
and becomes useless when this context is not present. This means that 
interpretation of contextually rich environments such as present in designing is not 
feasible. 

These two reasons indicate that computers do not posses the communication – and 
learning capabilities that humans have, and therefore fail to tackle real life design 
problems autonomously. Practically speaking, this implies that designing can best be 
enhanced by creating systems that support designers in their communication and 
learning processes. 

The foregoing shows that our model of designing at a general level meets the demands 
formulated in section 2.1: it provides an explanation of the applicability of design 
support on the basis of characteristic features of the process, and it predicts to some 
extent what kind of support would further enhance the process.  

2.6 Developing advanced support 

Above, it has been explained that integrated design is difficult, because domain–
specific subsystems of the design object are not functionally and spatially decoupled, 
and design phases are not carried out sequentially. In other words, designing with an 
integrated approach introduces many additional couplings in the design object. It is the 
structure (or scheme, French, 1985) of the design object that specifies which couplings 
extend over problem domain and product life cycle phase. The structure for the design 
object is largely determined during the conceptual design task. Therefore, the 
conceptual design task is of crucial importance when using an integrated problem 
solving approach.  

By taking decisions from a system point of view, as advocated by integrated problem 
solving, the conceptual design problem becomes considerably more complex. Hence, 
successfully designing with an integrated approach requires proper (technological) 
support for conceptual design.  

For the area of controlled electro–mechanical systems, quite some design knowledge 
has been formalized, for instance procedural knowledge (Koster and Van Luenen, 
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1993), declarative knowledge (Bradley et al., 1991; Koster, 1993) and strategic 
knowledge (Buur, 1990). The goal of our research is to create a practical computer–
based system in which this formalized knowledge might be incorporated, and 
eventually automate design activities based on this knowledge. As said previously, this 
requires the knowledge to be incorporated in the system in such a way that the users of 
the system, designers, will communicate and learn more effectively and efficiently. 

Both in learning and communication, and therefore in design, the use of abstractions  
plays a crucial role. Abstractions are descriptions of a system in terms of a formal 
language that are competent for answering specific questions. In our model of 
designing, the importance of abstractions is clearly visible. Abstractions essentially 
constrain the focus and perspective of the designer through their representation. Thus 
abstractions provide the framework within which the evolution of the design object 
takes place (Hoover et al., 1991). As they say, “the quality of the completed design 
depends on the ability of the designer to select useful abstractions, to use them to 
model the performance of the design, and to use the results of the evaluation to guide 
further design refinements”. Hence, we may expect that communication and learning 
problems are caused by an improper or ineffective use of abstractions. 

In recent years, substantial progress has been made in the area of supporting the 
‘downstream’ tasks of the design process, especially detailed design. This progress 
indeed has been accompanied by the possibility to make more advanced abstractions 
in CAE systems, such as geometric modeling (Finger and Dixon, 1989a), parametric 
modeling and feature–based modeling (Salomon et al., 1993). Apparently, for these 
tasks support is being provided that properly uses abstractions. For the ‘upstream’ 
tasks such as conceptual design however, support is largely not available 
(Finger and Dixon, 1989a). A more concise statement of what this support should be 
follows by characterizing conceptual design in terms of our model of designing.  

With respect to the design object: 
– level of concreteness: function, behavior, initial form 
– resolution: low, but with a varying structure 
– precision: pre–parametric, constraints, “order–of–magnitude”  
– number of alternatives: high 

With respect to the design process: 
– concretize/deconcretise: invoked around models describing principle solutions, to 

deal with the form–function dependencies 
– refine/aggregate: invoked in combination with concretize/deconcretise 
– fuzzify/defuzzify: present in the form of finding missing parametric constraints 
– generate/refute: relatively frequently invoked 

With respect to the design knowledge: 
– declarative: ‘commonsense knowledge’, principles and previous experiences (i.e. 

‘expertise’) are important 
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– procedural: little algorithms, many heuristics and implicit rules, opportunistic 
decision taking (i.e. ‘creativity’) 

– strategic: little planning possible 
– situational: initially mostly not explicitly available (i.e. ‘intuition’) but rapidly 

increasing (hopefully) 

The characterization implies that there are many interdependent perspectives on the 
design object. Also, it shows that formal evaluations are hard to perform and that 
many ‘gut feeling’ decisions are taken that will have a major influence on the final 
result. Furthermore, it emphasizes that learning plays a crucial role and will mostly 
involve situational knowledge, and that there is little explicit knowledge. Finally, the 
explorational mode seems to be dominant for the conceptual design task.  

As identified above, the maintenance and manipulation of models and abstractions is 
something that computer–based design support systems can take over from the 
designer. These systems can significantly enhance designing, provided that they are 
better suited for these tasks than designers. The basic reasons why computer based 
design support are not be better suited for these tasks are as follows (Buur and 
Andreasen, 1989). 

– Maintenance of abstractions falls short in computer–based design support systems 
because they are not formulated properly. For example, abstractions are not 
specified in terms of relevant objects (i.e. objects from the problem domain of the 
designer), or cannot be represented in a relevant perspective. Also, the descriptions 
are often ‘stand alone’, and not embedded in a structure of declarative knowledge 
that specifies the context of different abstractions and in what ways they are 
interrelated. We might say that the maintenance of abstractions in CAE systems 
generally gives problems if the descriptions of the design object are 
underformalized. 

– Manipulation of abstractions is problematic because designers cannot modify the 
design object in the way they would like. Examples of this are the restrictive, rigid 
sequence of invocations that systems enable, and the lack of support for converting 
design descriptions to a higher level of abstraction. If CAE systems lack flexibility, 
they limit possibilities for making design refinements, thereby missing the 
opportunity to enhance designing. This is caused by an overformalization of the 
design actions. 

It should be noted that the overformalization of design actions is mostly a consequence 
of the underformalization of the maintenance of abstractions; because abstractions are 
not described in the proper way, it becomes possible to operate on them in ways that 
just do not make sense. One way of preventing that is to severely restrict the 
manipulations that can be done on the abstractions. Of course, a better way would be 
to improve the maintenance of abstractions. This clarifies that in fact the dominant 
problem is one in the area of modeling: what is the exact meaning of abstractions, and 
how are they treated. Therefore, we discuss the development of design support from 
this perspective hereafter. We propose two new concepts to improve the maintenance 
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of abstractions in the next chapters: one stemming from an analysis of linguistic 
aspects (multiple model languages, chapter 3 and 4), and one from an analysis of 
implementational aspects (polymorphic modeling, chapter 5). 

2.7 Conclusions 

Three characteristics of designing are crucial for understanding and supporting it: 

– design is context dependent. 
– design problems are ill–structured and incomplete. 
– design involves a time–constrained  initiation of change. 

Because of these characteristics, design has to be viewed as a contextually situated, 
evolutionary process. A descriptive, object oriented and concurrent model of the 
design process is best suited for explaining how designers cope with these 
characteristics. Analysis of an exemplar from this category of design models, the 
Task/Episode Accumulation model (Ullman et al., 1988), shows that application of 
this model to the development of design support is not straightforward, because: 

– inconsistencies may arise in the model 
– the evolution of the design state has not been worked out 
– no separate context–dependent and context–free part are distinguished. 

To overcome this, a new model of designing is needed. The main structure of the 
proposed new model relates the design object, the design process and design 
knowledge (figure 2.7). It clarifies that designing involves a specific form and 
combination of learning and communication.  

There are four distinguishable ways in which the features that define the sets of 
artifacts incorporated in the design object vary: 

1 level of concreteness 
2 resolution 
3 precision 
4 number of alternatives 

A useful metaphor of a four–dimensional design space in which the design object 
evolves during designing follows from this. Using this metaphor and the main 
structure of the model, the design process was characterized and design knowledge 
was classified. Finally, modes of design were identified. When actually applied in the 
development of CAE systems for specific domains, additional features need to be 
added to the model. 

The model explicitly presents an overall view upon designing, which helps to prevent 
inconsistent or incompatible assumptions. It describes a pattern of how context 
influences the design process and how evolution can be given a framework. 
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Opportunities for support can be evaluated. The model is of a unifying nature: it is 
able to embrace most existing models of designing, and provides the ability to 
understand designing at a deeper and less intuitive level. 

There are three different ways to enhance designing: by formalizing design 
knowledge, by automating design activities on basis of formalized knowledge and by 
creating practical computer–based systems that incorporate formalized knowledge and 
automated activities. Enhancing designing by means of practical systems requires 
systems that support designers in their communication and learning processes.  

The conceptual design task is of crucial importance when using an integrated problem 
solving approach. Concepts that will aid the designer in maintenance and manipulation 
of abstractions are needed. Therefore, development of design support is discussed 
from the perspective of modeling hereafter. 





Chapter 3 

Multiple model formulations 

3.1 Introduction 

To communicate and to think about a physical system, either existing (in case of 
modeling) or to be created (in case of design), people use models of this system. What 
can be expressed in these models is determined by the language in which they are 
stated. For it is the language that specifies what terms can be incorporated in a model 
(the vocabulary), and how these can be meaningfully combined (the grammar). The 
expressiveness of a language is large if it has a large vocabulary and an unrestrictive 
grammar. Note that in terms of the model of designing formulated in chapter 2, the 
expressiveness relates to the size of the design space that can be covered with the 
language. 

Along with expressiveness, the language also determines how a model is to be 
encoded (the notation). Finally, there is generally some sense of good and bad layout 
acquainted with it (the style), although this may not be formalized and may to some 
extent differ from person to person. The coding and layout of a model, i.e. its 
representation, critically determine the ease with which the contents of a model is 
observed and interpreted. A language is more powerful if it is readily interpreted, i.e., 
if its representation is clear, insightful and unambiguous. From the point of view of the 
model of design, we might say that a powerful language provides a well–chosen, 
limited perspective and an illuminating filter on the design object.  

When synthesizing or analyzing a model, one has to select a language in which to 
formulate the model. This would not be an issue if there were a language that is both 
expressive and powerful. However, it appears that a trade-off has to be made 
(Mullins and Rinderle, 1991); because the larger the amount of aspects and features 
that can be expressed in a language, the less clear and insightful and the more 
ambiguous the representation will be in general. For example, the expressiveness of 
mathematical equations is large, but it is often difficult to estimate specific 
characteristic features of the system on basis of such a description (Van Dijk, 1994). 
Conversely, graphical representations like the Bode plot or the s–plane can only 
express specific aspects of linear dynamic systems, but have proven to be powerful in 
the design of control systems (see e.g. Dorf, 1989). Therefore, the choice of the 
language in which to formulate the model is an important issue. It has a critical 
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influence on the communication and learning processes in which the model is taking 
part (Popper, 1972). Unfortunately, only few model builders realize this. 

As both communication and learning are central to the use of an integrated design 
approach, it would be wise to select the most powerful language which is available to 
formulate the model in. However, as has been discussed in chapter 2, a designer has to 
concurrently consider the design at different levels of abstraction, ranging from not 
concrete, with a low resolution and a low precision (generally at the system level), to 
concrete, with a high resolution and a high precision (at the component level). This 
requires the ability to inspect the design object from multiple perspectives, using 
different filters and a varying focus. This holds more when the design project is done 
by a team comprised of designers from various disciplines and backgrounds, which is 
typically the case when dealing with mechatronics and concurrent engineering  
(Buur and Andreasen, 1989). Therefore, it is impossible to find one single language 
that is both powerful and appropriate to formulate the model in. If we find an 
appropriate language, it will be one that is expressive, but not very powerful (natural 
language for example). Using such a language is not a feasible solution; it will work 
counter–productive while designing, as it will enlarge communication and learning 
problems. 

An approach that can circumvent this is to use multiple formulations of a model 
(Tomiyama et al., 1989; De Vries et al., 1992; Roozenburg, 1993). Then a set of 
languages can be selected which individually are powerful in a specific area, and 
together provide all the expressiveness and representations that are needed. Multiple 
languages provide powerful formulations of models without sacrificing 
expressiveness. In fact, this is nothing new for designers; the iconic diagram typically 
used during conceptual design is a formulation different from the solids and views 
formulation of detailed design, which is again different from the feature–based 
descriptions applied during process planning. What is new in the above proposition 
however, is to apply these multiple languages simultaneously instead of in a phased 
manner. In case of an integrated design approach, the simultaneous formulation of the 
design object in multiple languages may even be indispensable (Bradley and Buur, 
1993). 

Simultaneous application of multiple model formulations introduces the need for 
establishing and maintaining relations between the different formulations of a model. 
Modifications of the model should principally be possible in any of these formulations. 
This implies that bi-directional conversions between the different formulations should 
be available. These should preferably be instantaneously realizable. Unfortunately, 
conversions are generally not straightforward, time–consuming and error–prone, if 
available at all. Therefore, design would be supported by a system that provides for 
automatic conversions between appropriate model formulations. Such a system would 
release the designer from the distracting and difficult task of converting between 
formulations, and shorten the time needed for conversion while reducing the risk of 
errors. 
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For restricted areas, systems featuring automatic conversions between model 
formulations have been realized, such as in software engineering (Interactive 
Development Environments, 1991) and in linear control system design (e.g. 
Grace et al., 1990; Van den Bosch, 1989). However, the multiple model formulations 
required when designing controlled electro–mechanical systems cover a larger range 
of aspects, which might be referred to as technical aspects of physical systems. Due to 
that, the languages involved will be more different from each other in terms of 
expressiveness. Hence, the conversions will probably be more difficult. 

In the next section, 3.2, requirements for and general characteristics of appropriate 
languages for conceptual design of controlled electro–mechanical systems are 
identified. The selected set of formulations is presented in section  3.3. In section 3.4, 
we address the issue of how to set up an extendible system to support the simultaneous 
use of these languages. Realizability of the resultant design proposal is evaluated 
shortly in section 3.5. In the proposed set–up, the conversion from one model 
formulation to another goes through a central model, the core model. The way in 
which this core model can be described is worked out in section 3.6. Finally, section 
3.7 lists conclusions. 

3.2 Languages for conceptual design 

Taken strictly, the foregoing implies that a lot of languages are necessary during 
(conceptual) design. Of course, that is not the intention of the statement made about 
using multiple languages: we should use as few languages as possible. Specifically, we 
should not use both of two languages if the perspective and/or expressiveness they 
offer differ only a little. This implies that the selection of languages should be done 
carefully, such that the most appropriate set is chosen. Appropriate in this sense 
implies three things: 

1 the languages that are included are suitable, i.e. they are tailored to usage during 
conceptual design of controlled electro–mechanical systems; 

2 each of the languages is considered to be necessary, i.e., each language has a 
specific area in which it is significantly better applicable for synthesis or analysis 
than any other; 

3 the set of languages is sufficient for this task, i.e. the complete set together can 
cover all aspects of interest during the conceptual design of controlled electro–
mechanical systems. 

In order to determine whether or not a language is appropriate for conceptual design of 
controlled electro–mechanical systems, it is necessary to identify the characteristics 
that are required of a language for this task. This is done in section 3.2.1. Based on 
this, a general characterization of model formulations that comply to this is given in 
section 3.2.2. 
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3.2.1 Requirements  

Based on the characterization of conceptual design as done in section 2.6, and on 
conclusions of relevant publications (Hogan, 1987; Libardi et al., 1988; Rinderle et al., 
1989; Akman and Ten Hagen, 1989; Wijbrans, 1993), we have come to the following 
requirements for the languages: 

– the representations should be graphical, e.g. networks, iconic diagrams, mnemonic 
diagrams or labeled graphs. This is because graphical representations are more 
informative and easier to interpret. Several reasons for this can be given. Graphical 
representations depict relations directly, which seem to be the terms in which 
people think (Simon, 1981). Textual representations on the contrary need to be 
processed (‘read’) before a relation is explicit. Also, all relations in a graph are 
observed immediately due to the pattern recognition abilities of humans. Non–
graphical representations only allow sequential observation of multiple relations. 
Finally, the topography of a diagram contains extra information that is not present 
in a textual representation. 

– the expressiveness has to include all the terms, principles and laws (i.e. all 
abstractions) that are theoretically sound and well–established in the relevant 
problem domains. Preferably, the grammar should inherently capture the ‘laws’ as 
much as possible. Then it is impossible to specify models that violate these laws. 

– the perspectives that need to be provided upon the integrated system description 
are those of information processing (mostly for the software part of the system), 
signal processing (electronics, control), and multi–domain power processing 
(electric, mechanics). 

– in order to support zooming in and out while observing the design object, the 
organization of the model should take the form of a part–of hierarchy. This means 
that a component (process) can be made up of lower level components (processes), 
and conversely, an aggregation of components (processes) can be dealt with as one 
higher level component (process). 

– the aspects that can be covered should be function, behavior, and configuration. 
– the partitioning of a model should be as modular as possible. In this context, 

modularity refers to the fact that the description of an aggregation in which a 
model fragment is embedded does not change when the internal structure of the 
fragment changes, or conversely, that the description of an internal structure of a 
model fragment does not change when the aggregation in which the fragment is 
embedded is changed. 

– it should be possible to characterize models in a qualitative or parametric way. 

3.2.2 General characteristics 

Model formulations that follow the above listed requirements will be hierarchically 
organized network models. Such models contain four main concepts that can be 
generally characterized, see figure 3.1: 
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FIGURE 3.1 General characterization of model formulations considered in this thesis 

– subsystems. A subsystem symbolizes a process or an object. Hence, states (in the 
sense of attributed variables) and operations can be aquatinted with a subsystem. In 
hierarchically organized networks, two kinds of subsystems can be distinguished: 
• composite subsystems. These subsystems are specified in terms of a 

(sub)network. 
• elementary subsystems. These subsystems are specified in terms of equations. 

– connections. In the formulations considered here, a connection symbolizes a set of 
constraints, namely that the variables on either side of the connection are pairwise 
equal. Stated differently: a connection does not specify any explicit variable or 
operation, but merely defines that a variable of the subsystem on one side is equal 
to a variable of the subsystem on the other side. It should be noted that most of the 
formulations considered hereafter have directed connections. One usually 
associates a flow with such directed connections. 

– knots. A knot is a joining of one end of more than two connections at a point where 
there is no subsystem. Hence, a knot does not represent a process or an object, but 
rather the splitting or fusion of connections. 
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– ports. A point where a connection can enter or leave a subsystem will be signified 
with the term port here. Hence, a port links a connection outside the subsystem to a 
connection inside the subsystem. This makes clear that ports are the elements that 
connect two layers in the model hierarchy. Also, it clarifies that ports do not 
specify any operation, but that they do specify variables, namely those with which 
a subsystem interacts with other subsystems in its environment, i.e. interaction 
variables. What makes a port semantically meaningful, is that in a port restrictions 
are defined for the attributes of its variables. Therewith, ports give complete 
control over interfaces of subsystems (see also section 5.6.1). It should be noted 
that this usage of the port concept does not match the port concept as used in 
electric circuit diagrams; what is called a port here is called a terminal there. We 
come back to this later. 

In the next section, where specific languages are discussed, we characterize languages 
by further determining the character of subsystems, connections and ports. 

3.3 Selection 

Among others, Buur (1990), Welch (1992) and Bradley and Buur (1993) have 
identified and compared languages that seem suitable for conceptual design of 
controlled electro–mechanical systems. We shall not repeat these discussions; rather, 
we present a selection of these (or similar) languages that we consider appropriate. 
During the characterization of the selected languages, it becomes clear what the strong 
points of these languages are. 

The goal of conceptual design is to find the configuration for the design object such 
that it will function properly. Or stated in transformational terms, the aim is to convert 
a functional description into a schematic description. So at least a functional and a 
schematic formulation will be needed during conceptual design. These are selected in 
section 3.3.1 and 3.3.2 respectively. In section 3.3.3, these two formulations are 
compared and it is concluded that an intermediate formulation is needed. The selected 
intermediate formulation is discussed in section 3.3.4, and the overall selected set is 
evaluated in section 3.3.5. 

For illustration purposes, one example system is depicted in each of the selected 
formulations. This system consists of a dc–motor, that is fed by a dc power supply 
through a safety switch. The motor drives a gearbox that is connected to a flywheel 
(the load). 

3.3.1 Functional formulation 

A functional description of a system is a description of what it can do (or rather should 
do), without specification of how this is to be done. A functional description needs to 
incorporate the following (Buur, 1990): 

– which processes can take place in a system 
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– in which states a system can be, i.e. which combinations of processes can be active 
simultaneously  

– which state transitions can take place 
– what are the conditions under which these transitions take place 
– what is the role of time in this, e.g. with respect to synchronization and timing. 

Languages for functional descriptions stemming from the mechanical design 
community typically only address the first issue. Consequently, these languages have 
found very limited usage, and are not considered here. More suitable are the various 
languages that are used in computer science (Bradley and Buur, 1993), such as the 
Modern Structured Analysis notation (Yourdon, 1989) and Timed Petri nets (Peterson, 
1981). These languages have a broader expressiveness, but still emphasize one or 
more of the above issues. Recently, Wijbrans (1993) has defined a combination of 
these languages, called the THESIS formalism. It can be regarded as a variant of the 
Modern Structured Analysis notation, where (among other extensions) possibilities for 
describing control, concurrency and event handling have been improved. An 
illustrating example of a model in this formalism is given in figure 3.2. This notation is 
the most powerful functional formalism that is available.  

 

FIGURE 3.2 Example model in the THESIS formalism 

A port in a THESIS model specifies either an input or an output variable of its 
subsystem. Ports have no explicit representation in THESIS. Three different types of 
input/output ports are distinguished: 

– data ports: for variables that represent information to be processed 
– control ports: for variables that represent events 
– activation ports: for variables that represent enable/disable flags.  

A connection denotes that a variable of an input port equals a variable of another 
output port. Consequently, we can say it describes a variable flow that can be of three 
different types: data flow, control flow and activation flow. Also, it follows that in 
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THESIS there are two types of knots: merge points and split points. The subsystems 
describe the transformation processes working upon the port variables, and can be of 
four kinds: 

– terminators: processes not belonging to the system but interacting with subsystems 
of the system. 

– data processes: normal operations that are performed on data inputs to obtain data 
outputs. An activation input may specify whether the process is active or not. Data 
processes can be specified by e.g. block diagrams, mathematical formulas and 
algorithms.  

– control processes: finite state machines that operate on control inputs and produce 
control outputs and activation outputs. 

– stores: processes that do not perform any operation, but merely copy input to 
output.  

Figure 3.3 shows the symbols used for the various types of connections and 
subsystems. Appendix C gives a more elaborate overview of the formalism. 

 

FIGURE 3.3 THESIS symbols 

The THESIS notation has been defined for the purpose of structured development of 
embedded control systems (i.e. computer–based closed loop controllers that are 
integrated in the systems they control). Consequently, this notation emphasizes the 
information processing perspective. To improve that, the semantics of data ports, data 
flows and data processes should be extended such that it covers not only data 
variables, but any kind of functional variable. If this modification is made, THESIS 
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complies well with the above formulated requirements. It is only a slight modification; 
a change of mindset rather than an actual redefinition. 

3.3.2 Schematic formulation 

A schematic description of a system is made to determine how the system works, 
without being explicit about the form in which this happens or the processes that 
result. A schematic description specifies a configuration of (conceptual) objects or 
processes that realize some effect(s). Typically, such models are stated in terms of a 
diagram of interconnected icons. Hence, we will use the language of iconic diagrams 
to obtain schematic formulations. Figure 3.4 shows the example system as an iconic 
diagram. 

 

FIGURE 3.4 Example system in the iconic diagram formulation 

Icons are mostly discipline–related. For some physical domains, like the electrical, 
hydraulic and pneumatic domain, (inter)nationally standardized icons are available for 
the basic subsystems of these domains (e.g., IEEE, 1987; NNi, 1991). For multi–
domain subsystems or subsystems in domains that have no generally accepted 
standards, ‘local’ standards are developed usually, or else new icons are postulated 
instantaneously. In appendix A, an overview is given of the icons used in this thesis 
and their meaning. 

The fact that icons are not fully standardized has some important implications. First, 
there is no static set of icons in the vocabulary of an iconic diagram language, unlike 
for example in THESIS. If new components are synthesized, new icons generally need 
to be devised. Secondly, iconic diagrams are to some extent context–sensitive, that is, 
their exact interpretation may be dependent of the problem context or the social 
context. And thirdly, there are few formal rules available for iconic diagrams. From 
this we conclude that iconic diagrams are an intuitive rather than a formal language. In 
other words, conceptual appeal of the representation is of more importance than 
exactness or unambiguity. This might well be the reason why iconic diagrams are 
frequently used during the conceptual design task: vagueness and some ambiguity can 
lead to “creative” interpretations, and this language stimulates that. Iconic diagrams 
comply well with the requirements formulated for conceptual design languages, except 
for the fact that they are usually not hierarchically organized. Extension of the 
language such that this is improved is straightforward; it requires the introduction of 
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icons for ports, such that these can be incorporated in an iconic diagram as to specify 
aggregate subsystems. The extension has been done for the domains considered here in 
appendix A. 

As can be expected from its intuitive character, the semantics of the subsystems in 
iconic diagrams is not fully agreed upon. One view is that they describe the ‘initial 
form’. However, an iconic diagram often contains elements that are only conceptually 
present, as an effect, and not physically, as a component. Usage of the term initial 
form suggests that all subsystems of the model are physical, which is not the case. 
Therefore, this view seems incorrect. A second option is that the elements describe 
‘design features’ (Salomons et al., 1993). Unfortunately, this does not help much, as 
the term ‘feature’ itself has no clear meaning; it has been used for many things related 
to a design (Finger and Dixon, 1989a). In a modeling context, iconic diagrams have 
been used to depict ‘Ideal Physical Models’, i.e., models that describe domain–
attributed, lumped, idealized physical phenomena (e.g. Shearer et al., 1967). In this 
interpretation, an icon represents a conceptual phenomenon by means of a sketch of a 
tangible counterpart with a behavior in which the modeled phenomenon is dominant. 
This means that in an Ideal Physical Model, a physical effect is described, and a 
possible form to obtain this effect is indicated, but not determined. In other words, in 
such a model it is not explicitly made clear whether a phenomenon describes a 
component or merely an effect that is incorporated inside a component. This is a way 
of looking at the matter that matches the purposes of designers. However, Ideal 
Physical Models are built from a restricted set of subsystems, namely the basic 
building blocks of the involved physical domains. The iconic diagrams considered 
here do not comply to these restrictions, for icons that represent composites of basic 
building blocks can be present, and also artificial phenomena such as information 
processing. The interpretation should be widened somewhat; iconic diagrams describe 
interconnected, domain–attributed, lumped phenomena, either idealized or composite, 
and either physical or artificial. Hence, an iconic diagram is a phenomenological 
model formulation.  

For most physical domains, a special kind of iconic diagram knot is defined that is 
called  global reference here. Figure 3.5 shows the icons for global references of the 
domains considered in this thesis. Like other knots, a global reference does not specify 
a physical phenomenon; rather, it defines that a certain physical variable of the 
involved domain is set to zero at its location (e.g., the electrical voltage, the rotational 
and/or translational speed, the hydraulic pressure). The domain–independent term that 
is used here to signify this type of physical variable is across–variable (Shearer et al., 
1967). Across–variables are used in conjunction with through–variables. A through–
variable is the generalized term to signify the physical variable of which the product 
with the across variable defines a power (e.g., the electrical current, the mechanical 
torque and force, the hydraulic fluid flow).  
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FIGURE 3.5 Icons for global references of the mechanical and electrical domains 

Some remarks have to be made with respect to this terminology. Across variables and 
through variables originally have been given an operational definition (Firestone,  
1933). An across variable has been defined as the power variable that can only be 
determined comparatively in an actual physical system, by measuring at two points 
across a system part. The through variable has been defined likewise; when a 
measurement device is inserted at one point in a connection of an actual physical 
system, it is imagined that this variable can be measured because it flows through the 
device. Obviously, the operational definition of across variables already fails for the 
global references; these do not specify a difference. The second and more fundamental 
problem with these terms is that they become confusing when used in a generalized 
thermodynamic framework (Breedveld, 1984, page 130). However, in here we will not 
employ this framework, and we prefer not to introduce new terminology if existing 
terminology can capture what is meant. Therefore, we maintain the terms across and 
through variables, but have introduced them differently to solve for the operational 
definition matter. 

In an iconic diagram subsystem, ports are represented by means of fixed points in the 
icon, mostly located at the border. The points generally are chosen such that they have 
an actual connection counterpart in the tangible component that the icon sketches. 
Hence, we can conclude that iconic diagram ports describe component connectivity. 
Because of the fixed location, the ports of a subsystem in an iconic diagram are called 
terminals. Inspection of some common icons (see figure 3.6) shows that there are three 
major kinds of terminals: 

– paired terminals, e.g. with the electric inductance (figure 3.6a) and the diode 
(figure 3.6b). As the name already suggests, paired terminals are always coupled 
pairwise. These terminals specify an across variable with respect to each other, and 
a common through variable. (Note that in electric circuit diagrams, a terminal pair 
is said to form one port. Hence, this port concept differs from the one used in this 
thesis). Paired terminals can be further divided into the following subtypes: 
• symmetric paired terminals, e.g. with the electrical inductance. In this case, the 

two terminals cannot be differentiated. That is, interchanging the connections 
of both terminals does not alter the model.  
 

• asymmetric paired terminals, e.g. with the diode. For such a terminal pair, it 
does make a difference when connections of both terminals are interchanged. 
Hence, the two terminals of the pair can be differentiated. Properly designed 
icons for subsystems having such terminals always contain an indication on 
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basis of which the differentiation is possible. Conversely, it can be noted that if 
such an indication is present, terminals of this type and subtype will be present. 

– autoreference terminals, e.g. with the translational mass (figure 3.6c). These 
specify an across variable with respect to a global reference, and a through 
variable. Often, the icon of a subsystem with these kind of terminals incorporates 
some image of a reference, see e.g. the rotational friction (figure 3.6d). However, 
the representation of the translational mass shows that this is not always the case. 
Multiple autoreference terminals are coupled if they represent a common across 
variable. This is for example the case for the translational mass and the rotational 
friction. If multiple coupled autoreference terminals are present, then one of these 
terminals will specify a through variable with respect to the other terminals. 

– signal terminals, e.g. the middle terminal of the electric current meter (figure 3.6e). 
These terminals specify either an across variable, or a through variable, or some 
other variable. 

From the inventory of terminal kinds it follows that there are two different kinds of 
connections in an iconic diagram: 

 

 a)           b)      c)         d)            e) 

FIGURE 3.6 Icons with different kinds of terminals 
a) electric inductance   d) rotational friction 
b) electric diode   e) electric current meter 
c) translational mass 

– power connections. These are connected to non–signal terminals. They specify two 
constraints: one for the across variables, and one for the through variables of the 
terminals on either side. Hence, if the graph is fully specified and correctly defined 
(that is, it contains all global references needed to determine values for all across 
variables), a power flow can be acquainted with each connection of this kind. 
Power connections are non–causal in iconic diagrams. Moreover, the power flow 
direction is mostly not shown.  

– signal connections. These connections are connected to signal terminals, and 
specify only one constraint. Consequently, a signal flow can be acquainted with 
this type of connection. 

Knots finally are generally represented in iconic diagrams by means of a dot. In 
electrical circuit networks, knots are called nodes. 

An important characteristic of an iconic diagram is that its structure incorporates 
invariants, such as Kirchhoff’s laws. These invariants are based on conservation 
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principles that hold for physical systems. Two types of invariants can be distinguished 
(e.g., Shearer et al., 1967): 

– the continuity requirement. This requirement states that through variables sum to 
zero at a knot. Kirchhoff’s current law and Newton’s law for equilibrium of forces 
at a point are instantiations of this requirement. 

– the compatibility requirement. This requirement specifies that along a closed path 
of connections and paired terminals, across variables sum to zero. A path that has a 
global reference at both ends is also considered to be closed. This implies that this 
invariant is always non–local (i.e., not concentrated in one network element), but 
rather spread out over a substructure of the network. Kirchhoff’s voltage law is the 
electrical representative of this requirement. 

An iconic diagram is suitable for providing the perspectives of signal processing, 
multi–domain power processing and configuration. 

3.3.3 Comparison 

So far, two languages for conceptual design have been proposed: the THESIS 
formalism, and iconic diagrams. An indication for the decisions and difficulties that 
are involved when converting a model from one formulation to the other can be given 
by the essential differences that exist between the model formulations. These are 
shown in table 3.1. The differences follow directly from the above discussion. 

Each of the entries in the table differs considerably for a THESIS model or an iconic 
diagram. This indicates that many decisions are involved when converting one 
formulation into the other. Even more, when performing the conversion in one step, 
there are no ways to evaluate intermediate results, because the languages do not give 
the possibility to formulate these intermediate results. In other words, an incremental 
approach is impossible in this way; all decisions have to be taken jointly. This is 
undesirable in evolutionary processes such as modeling and designing. 

A solution to this would be to use some kind of intermediate language, i.e., one that 
lies between a functional model formulation and a phenomenological model 
formulation. Publications on automated conceptual design of physical systems have 
indicated that the bond graph language (Paynter, 1961; Breedveld et al., 1991) is 
appropriate for this (Ulrich, 1988; Finger and Rinderle, 1989; Rinderlee and 
Subramaniam, 1991; Redfield and Krishnan, 1992; Sharpe and Bracewell, 1993). We 
follow these indications and select bond graphs as an intermediate model formulation. 
The bond graph language meets the requirements that have been formulated in section 
3.2. 
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  THESIS model  iconic diagram 

1. variables  functional variables  physical variables 

2. connections  causal  non–causal 

3. ports  inputs / outputs  component 
connectivity 

4. subsystems  transformation 
processes 

 physical phenomena 

5. structure  no invariants, 
reference free 

 (non–)local 
invariants, 
with references 

TABLE 3.1 Essential differences between a THESIS model and an iconic diagram 

3.3.4 Behavioral description 

In figure 3.7, the example system is depicted in bond graph terms. The bond graph 
language is a well–defined, formal language suitable for describing non–domain–
related energetic effects of physical systems.  These effects fully define the dynamic 
behavior of these systems. Hence, bond graphs can be regarded as a behavioral model 
formulation. It is presumed that the reader is familiar with the language, so the 
characterization of bond graphs is kept short. The subsystems of a bond graph describe 
either non–idealized (i.e. composite) physical phenomena or idealized elementary 
energetic processes. Contrary to iconic diagrams, this difference is explicitly 
represented in the bond graph formulation: idealized elementary processes are depicted 
by means of mnemonic codes, whereas composite physical phenomena are represented 
by means of ellipses, see figure 3.7. (This is a particularly clear reason why the 
combined usage of bond graphs and iconic diagrams is useful.) Subsystems can have 
two types of ports: power ports and signal ports. Power ports specify both an effort 
variable and a flow variable, whereas signal ports only specify one variable, which 
may be an effort or a flow, but can also be a mathematical variable. The connections, 
called bonds, indicate the (power or signal) flow between the subsystem ports. The 
half arrows of the power bonds indicate the positive power flow orientation. Two 
types of knots are defined in the bond graph language: the zero junction and the one 
junction. These junctions implement domain–independent generalizations of 
Kirchhoff’s laws, and hence represent the continuity and compatibility requirements. 
The perspectives that are offered by bond graph models are those of signal processing 
and multi–domain power processing. 
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FIGURE 3.7 Bond graph formulation of the example system 

The connections in a bond graph can be both causal or non–causal. A non–causal bond 
graph model can be augmented with causality on the basis of well established rules 
(Karnopp and Rosenberg, 1968; Breedveld, 1986; Van Dijk, 1994). A port of a bond 
graph subsystem incorporates the variables with which the subsystem exchanges 
energy with its environment. Consequently, a bond graph port allows calculation of a 
generalized impedance or admittance, i.e. it specifies a dynamic interface. Invariants 
are captured locally in the bond graph, in the junctions (although not always, see 
Hogan and Fasse, 1989). Mostly, the choice is made to not include global references in 
the structure of bond graphs. Background of this is that global references do not 
contribute to energetic behavior, and are not needed in a bond graph for purposes of 
definition (as in iconic diagrams). Hence, leaving global references out will reduce 
complexity of the graph. Also, leaving them out will generally reduce the number of 
causal problems (Van Dijk, 1994).  

3.3.5 Evaluation 

Based on the foregoing observations, table 3.1 can be augmented with the bond graph 
formalism. The result of this is shown in table 3.2. This table suggests that bond 
graphs indeed are an intermediate formalism; for each of the entries, the bond graph 
characteristics are more concrete than those of a THESIS model, and less concrete than 
those of an iconic diagram. Furthermore, when converting a functional model into a 
phenomenological model or vice versa, the bond graph language can cover ranges of 
intermediate models in two important ways: from fully causal to fully non–causal (for 
the connections), and from fully in  terms of idealized elementary processes to fully in 
terms of components (for the subsystems). Therefore, it can be concluded that the 
bond graph language is a good intermediate between a functional and a 
phenomenological formalism.  

The three model formulations selected so far are all necessary during conceptual 
design of controlled electro–mechanical systems; each has a specific area in which it is 
more suitable for proposing and/or evaluating decisions to be made about the 
integrated system than the others. Without doubt, the set is not sufficient in general, as 
a designer of controlled electro–mechanical systems will soon encounter situations in 
which other model formulations are needed. This will especially concern model 
formulations that are discipline–specific. A feasible approach to solve for this is to 
strive for a set that is sufficient as far as inter–disciplinairy formalisms are concerned, 
and provide import– and export links from and to discipline–specific formalisms. In 
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this sense, the set identified above does seem to be a reasonable starting point. The set 
of three formulations will also suffice to demonstrate and evaluate the principle of 
multiple model formulations. Therefore, additional model formulations will not be 
considered.  

  THESIS model  Bond graph model  iconic diagram 

1. variables  functional data  energetic effects  physical variables 

2. connections  causal  (non–)causal  non–causal 

3. ports  inputs / outputs  dynamic interface  component 
connectivity 

4. subsystems  transformation 
processes 

 physical phenom. / 
ideal  processes 

 physical 
phenomena 

5. structure  no invariants, 
reference free 

 local invariants, 
reference free 

 (non–)local inv., 
with references 

TABLE 3.2 Essential differences with a bond graph model as intermediate 

3.4 Design of the system set–up 

3.4.1 Main design issue 

When simultaneously applying multiple model formulations, one model is formulated 
and can be altered in multiple ways. For example, the models of figure 3.2, figure 3.4 
and figure 3.7 will be at the disposal of the model builder simultaneously. Either of 
these formulations can be chosen to modify the model at any time. There are two 
central problems to be solved when setting up a support system for this: 

– how to keep different formulations of one model consistent, i.e., such that they 
indeed describe the same model. For example, the power flow specified in a model 
should be a common part of both the bond graph and iconic diagram representation 
and therefore has to be included consistently in both formulations.  

– how to keep different formulations of a model tractable, that is, to provide the user 
with the ability to manipulate the model in a predictable way, without loosing 
oversight what the current model constitutes, how features relate to each other in 
the different formulations, and how a desired modification can be made.  

The main system design issue underlying this is where the information defining the 
model is stored and how it is updated. There is a range of options for this. One extreme  
 
is to store the model completely distributed, i.e., separately for all of the different 
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formulations. The other extreme is to centralize all this information, i.e., to have one 
integrated object, called the core model here, in which the information for all model 
formulations is stored. Figure 3.8 shows an impression of both of these solutions. 

 

           a)           b) 

FIGURE 3.8 Extreme solutions for model storage:  
a) completely centralized 
b) completely distributed 

It is not a trivial matter to say which of these two options is closest to the optimum; 
many aspects of system design are related to it, while on the other hand predictions of 
consequences are hard to make. For three reasons, we have decided to start from the 
centralized set-up: 

– conceptual clarity. The conversions are more rigidly structured in the centralized 
solution. This means that the end user of the system will have less problems with 
understanding how the system works. Also, it will force system developers to 
discuss conversions and storage formats for models at a more fundamental level. 

– extendibility. Above, three model formulations have been selected and it has been 
discussed that addition of others is likely if additional design tasks are considered 
or the domain of interest is changed. Therefore, extendibility is an important issue. 
Suppose we have N model formulations, and want to add a new one. In case of the 
distributed solution, the total number of (uni–directional) conversions that has to 
be added then is N (N – 1). For the centralized solution, this number is equal to 
2N. Hence, these numbers are the same when N equals 3 (i.e., our situation). For N 
larger than 3, the centralized solution is preferable. 

– maintainability. The network specifying the dependencies between model 
formulations is smaller and simpler in the centralized case. This will most likely 
improve maintainability of the system. 
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We assume thus that there is one central description, the core model, that stores all 
information defining the model. The remainder of this section addresses the question 
what this information should be, and how this information is changed during 
conversions. The resultant system set-up should be optimized for consistency and 
tractability of the model. 

3.4.2 Conversions 

Protection 
The concept of multiple model formulations inherently implies that there are multiple 
editors available in the system, each providing a partial view upon the core model and 
enabling manipulation thereof. Without special measures, every operation that can be 
done on the core model is available in each editor. Consider the next example. 
Causality analysis is an important tool for evaluation of a model before simulation 
(Van Dijk, 1994). Without special measures, it would be possible to assign causality to 
the core model by issuing this command in the iconic diagram editor. However, the 
result of this operation cannot be evaluated in the same editor, as iconic diagrams do 
not explicitly show causality. In other words, the core model can be changed without 
direct notification to the user. This implies that the operation is not tractable, unless an 
editor for one of the other formulations is also inspected. Such a situation is 
dangerous, and should be avoided. The language specific model upon which an editor 
provides a view should be protected such that only operations that have a visible effect 
are available. This is not a restriction of model manipulations that the user of the 
system can do; it merely means that the places from which this can be done are 
restricted. So conversion from the core model to a language specific view (or vice 
versa) should at least consist of the addition of a protection to a language specific 
model. 

 

FIGURE 3.9 Step 1: Protection 
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Visualization 
When one model is formulated in two languages, the notation and layout 
(representations) generally are different, although they may define the same properties 
for the model. For example, the way in which a motor is depicted (figure 3.10) or the 
topographical position in the graph are generally different for a bond graph 
formulation and iconic diagram formulation of a model in which the motor is 
incorporated. In formal terms: one formulation of a model is (at most) isomorphic to 
the other, rather than the same. 

 

FIGURE 3.10 Isomorphic formulations of a motor 

It is possible to separate representation–specific data of a model from information that 
should be the same for all model formulations, i.e. intrinsic model properties. There is 
no need to keep all representation–specific data of one formulation inside the core 
model, as it is not of concern for other model formulations. Even more, assuring 
consistency between different model formulations is done much more securely and 
faster if the information that needs to be checked is minimized. Therefore, 
representation–specific data should be stored or generated separately from intrinsic 
model properties. In other words, a textual language specific description should be 
maintained that holds all intrinsic model properties. Graphical notations and 
topographical positions should be added to this description at conversion time, to 
obtain the language specific model. I.e., conversion from the core model to a language 
specific view requires a visualization phase before the protection (figure 3.11). 

Translations and transformations 
Above, it has been shown that the semantics of the port–concept depend on the 
language; in THESIS a port specifies an input or output, in a bond graph it specifies a 
generalized impedance or admittance and in an iconic diagram it specifies component 
connectivity. An important consequence of this is that multiple formulations of one 
model are not isomorphic: either the subsystems are different (the decomposition 
differs), or the structure of the model is different (the relations between the subsystems 
differ), or both. An electric resistor in an iconic diagram for example has two 
connections, whereas in the bond graph formulation this element has only one bond 
connected to it. Of course, the parts that are distinguished and their structure bear some 
dependency, but they are generally not isomorphic. In other words, intrinsic model 
properties such as the structure depend on the formulation of the model, and thus we 
have language specific description that should be coordinated. 
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FIGURE 3.11 Step 2: Visualization 

A way to prevent this is to devise a language–independent core model, through which 
coordination of separately maintained language specific descriptions is enforced 
(Tomiyama et al., 1989; Aksit and Bergmans, 1992). For this solution to be feasible, 
the core model should contain all information that is needed to obtain any of the 
language specific descriptions, that is, it should integrate all information defining the 
actual model. So the ‘rest of the conversion’ in figure 3.11 should consist of a 
translation and transformation from core model into language specific view; the 
subsystems need to be translated, and the model structure needs to be transformed. 

Based on the foregoing considerations, we propose to set up a system featuring 
multiple model formulations as depicted in figure 3.12. 

Our proposition is in fact a specific implementation of the metamodel framework, a 
concept introduced by Tomiyama et al. (1989) that has gained considerable attention. 
Tomiyama et al. (1989) formulated three functions that this concept can serve. The 
first function is integration of several models. In our realization, this role is taken by 
the core model. The second function is to model physical phenomena in order to make 
different theories underlying different models compatible. The translations and 
transformations provide for this in the proposed system set-up. The final role 
mentioned by Tomiyama et al. (1989) is that of serving as a tool for describing the 
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evolving design object. Although the metamodel is necessary to enable this, we show 
in chapter 6 that the framework alone (and hence the proposed system set-up) is not 
sufficient to realize this function. 

 

FIGURE 3.12 Set–up for a system featuring multiple model formulations 

3.5 Realizability 

A realization of the proposed system set–up is obtained when the following is 
incorporated: 

1 a mechanism for protection of language specific models such that a language 
specific view is obtained, i.e. the Model–View–Controller paradigm 
(Krasner and Pope, 1988). This is a well–known and proven practice from the  
SMALLTALK–80 programming community. Details shall not be worked out here. 

2 methods for visualization of the respective language specific descriptions to obtain 
language specific models, i.e. addition of notations and topographical positions. 
Proper notations for language elements in a certain formulation are simply a matter 
of definition. In the bond graph formulation, this definition has been well 
formalized on the basis of general rules (Breedveld, 1982) and generally is 
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followed rather closely. The same holds for the THESIS formulation (Wijbrans, 
1993). In the iconic diagram formulation, the definition of notation is done 
individually for each subsystem, although some rules of appropriateness can be 
identified. Hence, the addition of notational information to language specific 
descriptions is rather trivial. The actual problem of visualization is to find a proper 
layout. Eades and Tamassia (1987) provide a fairly recent and complete 
bibliography on algorithms for automatic graph drawing. On the basis of this work, 
Wijsman (1992) has selected, modified and implemented an algorithm for 
automatic layout of iconic diagrams. Therewith, he has shown the feasibility of 
this part of the setup. Performance of this algorithm will be shown in the case 
study (see section 6.4). More details on the design and implementation of the 
algorithm are given by Wijsman (1992). 

3 methods for translation and transformation from core model to the respective 
language specific descriptions and vice versa. Several publications have indicated 
the feasibility of converting functional models of dynamic systems into bond 
graphs (Ulrich and Seering, 1989; Finger and Rinderle, 1989; 
Redfield and Krishnan, 1992) and vice versa (Macfarlane and Donath, 1988; 
MacFarlane, 1989; Van Dijk et al., 1992). Hence, we have looked exclusively at 
the bond graph and iconic diagram model formulations. Algorithms for the 
conversions between these model formulations are presented and discussed in 
depth in chapter 4. Conversions to and from functional model formulations (i.e., 
THESIS) are not worked out here. 

4 a formalism (language or data structure) for the core model, in which all 
information that is needed to obtain any of the language specific descriptions is 
defined unambiguously. This will be worked out in the next section. 

3.6 Formalism for describing the core model 

The formalism for describing the core model should comply to the following criteria: 

1 it should be possible to integrate into the core model all information incorporated 
in any of the actual model formulations, and preferably nothing more. In other 
words, the expressiveness of the formalism should embrace the expressiveness of 
each of the model formulations as closely as possible 

2 the formalism in which the core model is described will not be shown to the end 
user directly; it is purely a computer–oriented formalism. Therefore, apart from 
ambiguity, whether or not the formalism is powerful from the point of view of the 
designer is not of concern. 

3 the system set–up has been designed such that maintenance of consistency and 
tractability are optimized. In line with this, redundancy in the information specified 
inside the core model should be avoided. 

4 efficiency and performance of the system set-up are improved if conversion (i.e., 
translation, transformation and visualization) of the core model is readily possible. 
This implies that the main constructs from which the formalism for the core model 
is built up should be easily mappable to each of the model formulations. As all 
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formulations are instances of labeled and directed graphs, the core model 
formalism should also be based on such graphs. 

An extensive treatment of all matters related to the selection of a proper formalism is 
beyond the scope of this thesis. Here, we just note that the SIDOX language family 
(Structured Interdisciplinary Description Of compleX systems, Wijbrans, 1993) is able 
to meet the above criteria. SIDOX originates from the SIDOPS language (Structured 
Interdisciplinary Description Of Physical Systems), which can be imagined as a 
special kind of textual description of bond graph models (Broenink, 1986). As a 
consequence, graphical images of bond graph (like) fragments can directly be 
translated to SIDOX constructs. Hence, we can indicate how a model fragment can be 
stored in the core model by presenting the appropriate ‘bond graph like’ fragment for 
it. 

SIDOX is a language family, that is, it is a set of languages that have largely a common 
definition, but have been tailored to specific applications. The common part mainly 
entails the way in which models are structured, i.e., the use of ports, subsystems and 
connections. The specific parts of the languages deal with the definition of special 
purpose language elements and specialized grammars. Specific parts are designed such 
that correctness and consistency of models can be optimally checked. Currently, 
SIDOX languages are fully equipped to allow description of THESIS models and of 
bond graph models. Specific THESIS language elements are for example ‘merge point’ 
and ‘split point’. Specific bond graph elements are the ‘0–junction’ and ‘1–junction’.  

Description of iconic diagram models using SIDOX requires that additional specific 
language elements and grammatical rules be incorporated in SIDOX. One obvious, 
trivial expansion that is required is that connections and ports be given a domain 
attribute, which can be checked upon consistency. More interesting problems are: 

– terminals must be described in a bond graph like manner. 
– knots must be described in a bond graph like manner. 
– global references must be described in a bond graph like manner. 

Extension of the SIDOX languages to solve these problems is straightforward if two 
new concepts are used: the ∆–junction and the Ψ–junction, which are introduced in 
the next chapter. Using these concepts, iconic diagrams can be described in a bond 
graph like manner. This indicates that a proper formalism for describing the core 
model becomes available. The actual extension of SIDOX to enable description of 
iconic diagrams is currently being realized (Breunese, 1993). 

3.7 Conclusions 

An appropriate set of languages to be used during a certain design task includes 
languages which are suitable and necessary for the task, and which together are 
sufficient to complete the task successfully. For conceptual design of controlled 
electro–mechanical systems this implies that a set of graphical languages is required 
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that at least describes function, behavior and configuration. For functional 
descriptions, THESIS (a variant of the Modern Structured Analysis notation) is a good 
candidate. Bond graphs are a powerful language for behavioral descriptions. Finally, 
iconic diagrams (which denote physical phenomena) should be used for describing 
configuration. For conceptual design of controlled electro–mechanical systems, the set 
of THESIS, bond graphs and iconic diagrams is appropriate. 

There are two central problems with formulating a model simultaneously in multiple 
languages: 

– model formulations should be kept consistent. 
– the information defining the model must be tractable. 

Both problems are solved if a system supporting multiple model formulations is set up 
in the following way. The user has access to a language specific view of the model in 
an editor. This view is created by adding protection to a language specific model. 
Protection is needed in order to prevent the user from issuing commands that cannot 
be evaluated in the active model formulation. The (graphical) language specific model 
results from a visualization of a language specific description, i.e., a textual, 
computer–oriented codification of the model. A language specific description only 
stores intrinsic model properties, and not information like layout. Several language 
specific descriptions can be coordinated through a central core model, that integrally 
stores the information needed for all different model formulations. Language specific 
descriptions are linked with the core model by means of bi–directional 
transformations. These transformations make theories underlying different models 
compatible. Figure 3.12 depicts the system setup obtained in this way. It can be 
interpreted as a specific realization of the metamodel framework. 

The SIDOX language family is suitable for describing the information incorporated in 
THESIS models and bond graph models in the core model. This formalism can 
straightforwardly be extended to allow description of iconic diagrams as well. 
Algorithms for transformations between language specific descriptions through this 
core model are discussed in depth in the next chapter, specifically concerning iconic 
diagrams and bond graphs. Automatic visualization of language specific descriptions 
to obtain a language specific model is feasible for iconic diagrams and bond graphs. 
Protection of a language specific model in a language specific view is also possible. 
Hence, the proposed system is realizable for the case of using bond graphs and iconic 
diagrams. No reasons can be foreseen why generalization of this result by including 
other formulations would be impossible. 



Chapter 4 

Iconic diagrams and bond graphs 

4.1 Introduction 

During the conceptual design of controlled electro–mechanical systems, both iconic 
diagrams and bond graphs can be applied fruitfully. A system set–up was proposed 
which supports the simultaneous formulation of models in multiple languages. This 
set–up specifies that multiple language specific models are coupled mutually by means 
of automated bi–directional conversions. Goal of this chapter is to formalize 
conversions between iconic diagrams and bond graphs, such that computer–based 
implementations can be realized.  

There are three approaches towards conversion of graph–based models: 

– algorithmic (sometimes referred to as computational); in this case, a deterministic 
procedure is available that completely specifies what steps have to be taken 
subsequently in order to obtain the output. For (sub)problems that clearly have 
good versus bad ways of solving, this approach is preferable, as it is 
computationally tractable and provides predictable results. Redfield and Krishnan 
(1992) use an algorithmic approach for converting a functional model into a bond 
graph model. 

– grammatical; in this case, a set of formal ‘rewrite rules’ is given, that specify how 
a (fragment of a) description may be rewritten in another form, while maintaining 
correctness and consistency. This approach is preferable for problems that require 
a solution rather than the solution. Problems that do not have a well defined goal 
or optimum solution, and neither require the consideration of alternatives, lend 
themselves well for this. However, for complex problems, grammatical approaches 
generally do not perform well, as control at a strategic level is lacking. 
Finger and Rinderle (1989), for example, apply a grammatical approach for 
converting a functional model into a bond graph model. 

– search–based; here, the solution is obtained by matching the input and/or the 
required output against a set of rules in a strategic way. This approach might work 
for problems where the previous two fail or are not suitable. However, it is 
computationally unattractive, and maintenance of consistency of the set of rules is 
hard for complex problems. The work of Ulrich and Seering (1989) on converting 
functional models into iconic diagrams is search–based. 
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The conversions required in the concept of multiple model formulations preferably 
should be realizable instantaneously; only then, multiple formulations of a model are 
truly simultaneously available. As no limit can be determined for the complexity of 
models that are considered during conceptual design, this implies that the conversions 
should be solved using an algorithmic approach.  

The rest of this chapter is organized as follows. In section 4.2, terminals and knots in 
iconic diagrams are formally described and related to bond graph ports and junctions. 
Consideration is given to conversions between model formulations in general and 
between iconic diagrams and bond graph models in particular in section 4.3. After 
these preparatory discussions, the actual conversion algorithms are presented. Section 
4.4 deals with the conversion from an iconic diagrams into a bond graph model, whilst 
section 4.5 deals with the reverse transformation. Section 4.6 summarizes conclusions. 

4.2 Describing iconic diagrams 

In section 3.3.2, iconic diagrams were introduced and the elements of this formulation 
were discussed shortly. We limited ourselves to an inventory, and did not go into a 
formalization of the language, that is, an unambiguous description of the language 
elements in formal terms. Before being able to specify a conversion algorithm, this has 
to be done. Because bond graphs are a formal language, this can be done by 
characterizing the elements of the iconic diagram language in terms of bond graphs.  

The interaction variables of iconic diagrams, the across variable and the through 
variable, can be directly related to the bond graph interaction variables, effort and 
flow, as shown in table 4.1. 

  Non–mechanical 
domains 

 Mechanical 
domains 

across variable  effort  flow 

through variable  flow  effort 

TABLE 4.1 Iconic diagram interaction variables in bond graph terms 

An iconic diagram connection consists of two constraints, one for the across variable 
and one for the through variable. For example, an electrical connection specifies that 
the voltage at one end equals the voltage at the other end, and that the current coming 
in at one end will go out at the other end. The same pair of constraints, only now in 
terms of effort and flow, is specified by a power bond. Because of this, we iconic 
diagram connections can be described by means of bonds.  
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The way in which electrical terminals of iconic diagrams can be described in terms of 
bond graphs has been indicated by Perelson (1975). Figure 4.1 depicts his proposition. 
Although this proposition outlines the approach, it falls short for our purposes for the 
following reasons: 

– in this form, it cannot be generalized over domains. The terminals that are 
considered, paired terminals, specify across variables with respect to each other. In 
the electric domain, this indeed can be constructed by means of the bond graph 
junction structure fragment depicted in figure 4.1. However, in the mechanical 
domain, the dual fragment is needed, because there the across variable is a flow 
instead of an effort. 

– only paired terminals are considered; the situation for autoreference terminals is 
not discussed. (Note: in the electrical domain, autoreference terminals are not 
used.) 

– the dimension of bonds that are connected to the terminals should be equal to the 
dimension of the bonds contained in the junction structure fragment. This is not 
explicit in the proposition. 

– Perelson rightfully notices that bond orientation is the key to specifying the 
direction of flow of the through variable and the polarity of the across variable, 
and examples are shown. However, general rules to obtain proper orientations are 
not formulated, and the difference between symmetric and asymmetric terminals 
(such as for the electric resistor and the diode respectively) is not worked out. 

 

FIGURE 4.1 Perelson’s proposition for describing an electric resistor in bond graph 
terms (Perelson 1975, figure 9) 

Solution of these problems requires the introduction of two new structural elements 
that are specifically for describing iconic diagrams. These elements are the D–junction 
and the Y–junction, and they can be defined in bond graph terms as shown in table 4.2
. Note that the D–junction and Y–junction are not equal to the S–junction and P–
juncion of Thoma (1975). First, the S–junction and P–junction are bond graph 
elements, whereas the D–junction and Y–junction are used for describing iconic 
diagrams. Second, the S–junction and the P–juntion do not have additional 
grammatical constraints such as the D–junction and Y–junction have.  
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  Non–mechani– 
cal domains 

 Mechanical 
domains 

 Additional grammatical 
constraints 

Y–junction  0   1   dim(each connected bond) 
equal 

D–junction  

 

 

 

 dim(p) =  dim(p )high
p )low

 
 =  dim(

p always connected to a 
subsystem 

phigh  and p  always 

connected to another 
junction 

low

TABLE 4.2 Definition of D– and Y–junction in bond graph terms 

Using these junctions, the elements of the iconic diagram language can be formally 
describe. Figure 4.2 gives an illustrating example how this is done.  
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FIGURE 4.2 Example of describing an iconic diagram using D– and Y–junctions 
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The choice of the name D–junction has been inspired by the fact that this junction 
models a nodic power port (Paynter, 1975; Hogan and Fasse, 1989), i.e. a power port 
that truly specifies a two–point (across) variable. The name Y–junction has been 
chosen because this junction models an iconic diagram knot, i.e. a point where 
multiple connections are joined.  

In figure 4.2 connections have not been given an orientation, because direction of flow 
of the through variables as well as polarity of across variables are not explicit in the 
iconic diagram. However, constraints on the orientation are explicit in the diagram by 
means of the character of the terminals. These constraints on orientation are 
maintained in the D– and Y–junctions. This is the main reason why the newly 
introduced junctions are useful; they properly formalize terminals in a local graph 
element. Generic formalizations of terminals and iconic diagram knots are shown in 
table 4.3. 

  junction  orientation constraints 

symmetric paired 
terminal 

 D–junction  orientation p  not equal  

orientation p  
high

low

asymmetric 
paired terminal 

 D–junction  orientation p  not equal orientation p 

orientation p  equal orientation p 
high

low

autoreference 
terminal 

 Y–junction  at least one in 
at least one out 

knot  Y–junction  indifferent 

global reference  Y–junction 
across var. = 0 

 preferred in 

TABLE 4.3 Language elements of iconic diagrams formally described 

4.3 General considerations on conversions 

Two different formulations of one model are supposed to describe the same system, 
and hence should specify the same behavior. Therefore, conversions from one model 
formulation to another should be behavior preserving, that is, the describing equations 
of the total system should be the same. However, the partitioning and structuring of 
these equations are generally different. Referring to the example model of chapter 3, 
the structuring of the iconic diagram formulation (figure 3.4) and the bond graph 
formulation (figure 3.7) both contain knots and edges that are not present in the other 
one. However, the subsystems that are distinguished in either formulation are the 
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same. In general, this is not the case; the functional partitioning of a system for 
example generally differs from the physical partitioning (see e.g. Ulrich, 1988; 
Rinderle et al., 1989). Hence, conversions generally do not preserve partitioning and 
structure. So we conclude that conversion from one model formulation to another in 
general involves a repartitioning of the model and a transformation of the model 
structure. 

In general, different model formulations imply: 

1 different subsystems, i.e., equations or composite subsystems are grouped 
differently. This means that the port variables differ over formulations. As noted, 
iconic diagrams and bond graph models do not differ in this sense. 

2 different ports, i.e., port variables are grouped differently. In the iconic diagram, 
port variables are grouped in terminals, whereas in bond graphs they are grouped 
in power (or signal) ports. 

3 different connections, i.e., constraints on port variables are grouped differently. 
Iconic diagrams and bond graph models do not differ in this sense either; an iconic 
diagram connection specifies the same kind of constraints as a bond. 

4 different knots, i.e., the connections of which ends are joined differ. For example, 
an electrical 1–junction in a bond graph joins bonds that cannot be joined by 
means of a knot in an iconic diagram. Conversely, global references are knots in an 
iconic diagram that generally are not present in bond graph models. 

From this it follows that conversions between bond graph models and iconic diagrams 
are not the most difficult conversions; they do not affect model partitioning, and they 
do not require completely different connections. Hence, translation of ports can be 
considered independently from transformation of structure to deal with the differing 
knots. 

There are situations for which it is desirable that the partitioning of a system in an 
iconic diagram differ from the partitioning in a bond graph model of the same system. 
This might be because one wants the iconic diagram to reflect the physical 
partitioning, whereas the bond graph model should reflect the functional partitioning. 
This means that the first issue mentioned above, different subsystems, also has to be 
addressed. The nice thing is, that the variation of partitioning can be considered 
independently from the conversion of structure. As long as elementary subsystems are 
not partitioned differently, varying the partitioning merely means that the model 
hierarchy is changed dynamically by contracting and unfolding composite subsystems, 
thereby creating and removing ports ‘on the fly’. Providing formalisms to support this 
is not covered in this thesis, and is considered as an interesting and important subject 
for future research. 
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4.4 Iconic diagram to bond graph algorithm 

4.4.1 Available methods 

Breedveld (1986) presents a systematic treatment of the conversion from Ideal 
Physical Models (i.e., iconic diagrams) to bond graphs. He shows that the underlying 
problems are the proper choice of one global reference for each domain that is present, 
and the proper choice of orientation for bonds in the bond graph. An explicit, human–
oriented algorithm is given for the conversion. The approach taken in this algorithm is 
to create an almost proper junction structure right away by carefully inspecting the 
iconic diagram model. Van Dijk and Breedveld (1991) present an automated version 
of this algorithm. Regarding this algorithm, the following points can be made: 

– Breunese (1992) demonstrated that the Breedveld algorithm does not explicitly 
identify the orientation constraint of asymmetric paired terminals (see table 4.3). 
As a consequence, a direct implementation of this algorithm can produce bond 
graph models with an abundant junction structure, due to the fact that orientations 
of bonds have been chosen wrongly initially. These abundant junctions cannot be 
removed using simple rules. When applying the algorithm manually, this situation 
seldom occurs, as humans immediately choose the bond orientation such that 
abundant junctions are not created. 

– the Breedveld algorithm is based upon the assumption that the iconic diagram 
model is correct. Consequently, verification of this model by a proper analysis 
before actual translation and transformation has not been taken into account. In a 
design context, such a separate analysis phase is highly desirable in order to verify 
the design proposal. 

Rinderle and Subramaniam (1991) also present a modeling system that is able to 
automatically obtain a bond graph model from an iconic diagram–like description. 
Their approach is basically to create a bond graph by composing bond graph fragments 
that have been predefined for each iconic diagram element. This leads to a graph with 
an abundant junction structure, that has some resemblance to our description with D– 
and Y–junction. By means of a fairly complete set of simplification rules, this 
abundant junction structure is subsequently simplified into a natural one. However, 
they do not systematically treat the main issue identified above, i.e., how to get rid of 
the references and orient bonds in a proper way. They seem to have solved this by 
manually providing bond graph fragments without references and with a proper 
orientation. Furthermore, they consider only mechanical iconic diagrams. 

The above observations have lead us to conclude that conversion from iconic diagram 
should be preceded by an analysis phase, in which the iconic diagram is verified and in 
which proper orientation of bonds is prepared. The new algorithm presented hereafter 
follows this line of thought. It has been designed considering single–dimensional  
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iconic diagrams as input only, that is, iconic diagrams that only have power flow 
connections that represent a single effort and a single flow. 

4.4.2 Outline 

Input to the procedure outlined here is a plain iconic diagram. Figure 4.2a depicts the 
system that is used to demonstrate the algorithm. The translation and transformation 
algorithm consists of the following steps: 

1 Make a formal description of the iconic diagram by means of D–junctions and Y–
junctions. This converts the iconic diagram to what is shown in figure 4.2b. 

2 Verify upon correctness and consistency of the formal description, i.e., check 
grammatical constraints of the junctions and make sure that all power ports and 
input signal ports are connected properly. If the model is not correct and 
consistent, stop conversion. In case of the example, the formal description is 
correct and consistent. 

3 Perform an orientation analysis. During this analysis, the goal is to assign a power 
flow orientation to each power bond contained in the graph, such that orientation 
restrictions are met (as far as possible). This step will be worked out in more detail 
in the next subsection. If it is not completed successfully, the conversion algorithm 
is stopped. Figure 4.3 depicts the example system after this step in the conversion. 
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FIGURE 4.3 Example system after orientation analysis 

4 Remove all global references and Y–junctions that are directly connected to these 
from the graph (not separately shown). 

5 Replace all D–junctions and Y–junctions by 1– and 0–junctions in the way 
specified by table 4.2. Figure 4.4 shows the bond graph model of the example that 
results from this. 
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FIGURE 4.4 Abundant bond graph that results after replacing iconic diagram junctions 
by bond graph junctions  

6 Simplify the resulting bond graph as far as possible. Appendix B lists common 
simplification rules. This final step leads to the bond graph depicted in figure 4.52. 

 

FIGURE 4.52 Converted bond graph of the example system 

4.4.3 Orientation analysis 

During orientation analysis, the goal is to assign a power flow orientation to each 
power bond contained in the formal description of the iconic diagram, such that 
orientation restrictions are met (as far as possible). Top (1993) was the first to describe 
an orientation assignment algorithm. The situation considered here is somewhat 
different, because orientation analysis has to be done in the iconic diagram rather than 
in the bond graph. Important differences in this respect are that the D– and Y–
junctions have orientation restrictions that differ from those of bond graph junctions, 
and that the iconic diagram contains global references, whereas bond graphs do not. 
Therefore, Top’s algorithm is not applicable here. 

Orientation analysis is completely comparable to causality analysis, which is done 
prior to converting bond graph models to functional models. Consequently, we have 
set up orientation analysis analogous to the standard procedure for causality analysis. 
To this end, a classification of orientation restrictions is needed and a procedure for the 
actual assignment of orientations must be given. We have identified the following 
types of orientation restrictions for ports of the formal description of iconic diagrams 
(e.g., figure 4.2b): 
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1 fixed orientation; this type of restriction is considered to hold for the ports of all 
subsystems except D–junctions and Y–junctions. The background of this is that 
there is an interplay between the sign of parameters in constitutive equations of an 
elementary subsystem and the orientation of the power flow through (one of) its 
ports (Perelson, 1975; Breedveld, 1986). In an automated modeling environment, 
it is virtually impossible to trace these interplays. A rigorous solution is to force 
fixed orientations upon ports of subsystems that can have constitutive equations 
with parameters. In practice, this limitation is not very restrictive, as one will 
seldomly want to use an orientation that conflicts with the fixed one. 

2 preferred orientation; the Y–junctions that represent global references have a 
‘preferred orientation in’ for all connected bonds. 

3 orientation constraints; this kind of restriction holds for the ports of a D–junction 
and for a Y–junction that represents an autoreference terminal, see table 4.3. 

4 indifferent orientation; Y–junctions that represent a knot have this type of 
orientation restriction.  

Orientation may now be assigned using an algorithm derived from the causality 
assignment algorithm (Breedveld, 1986): 

1 Assign all fixed orientations (type 1) 
2 Propagate orientations by applying orientation constraints (type 3) as far as 

possible. If an orientation conflict (i.e., an unsatisfied constraint) occurs at this 
stage, the iconic diagram model is flawed and the orientation analysis is stopped 
unsuccessfully. 

3 If the model is not completely oriented yet: assign a preferred orientation. 
4 Propagate orientations by applying orientation constraints (type 3) as far as 

possible. If an orientation conflict (i.e., an unsatisfied constraint) occurs at this 
stage, try to solve it by incorporating a Y–junction that represents a splitting point 
at the appropriate place. 

5 Repeat step 3 and 4 until all preferred orientations have been assigned. 
6 If the model is not completely oriented yet, two situations can be present: either the 

model does not contain an explicit global reference for each domain, or it contains 
a nodic subgraph (Paynter, 1975; Hogan and Fasse, 1989). In the first case, 
orientation analysis finishes unsuccessfully. In the latter case, continue by 
assigning an indifferent orientation. 

7 Propagate orientations by applying orientation constraints (type 3) as far as 
possible. If an orientation conflict (i.e., an unsatisfied constraint) occurs at this 
stage, try to solve it by incorporating a Y–junction that represents a splitting point 
at the appropriate place. 

8 Repeat step 6 and 7 until all orientations have been assigned. 
9 If the model is still not completely oriented yet, it does not contain an explicit 

global reference for each domain. Stop orientation analysis unsuccessfully. 
Otherwise, orientation analysis has been completed successfully. 
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Figure 4.6 depicts how orientation analysis proceeds for the example system. Bonds 
have been given a number in the order in which they have received orientation. Bond 
number 11 is the last one that has been oriented in step 1. After step 2, 16 bonds are 
oriented. When step 5 is completed, bond number 17 is also oriented. Two nodic 
substructures remain, as has been indicated in the figure. Through steps 7 to 9, these 
also become oriented.  
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FIGURE 4.6 Process of orientation analysis 

Besides nodic substructures, orientation analysis might also enable identification of 
other subtle structural properties of iconic diagrams. These properties do not surface 
when orientation is assigned according to Top’s algorithm. However, further research 
is needed before more conclusions regarding the subject of orientation analysis can be 
drawn. 

4.5 Bond graph to iconic diagram algorithm 

4.5.1 Available methods 

Several publications have indicated the utility and feasibility of converting bond graph 
(like) models to iconic diagrams, mostly in the context of automated conceptual design 
(Ulrich and Seering, 1989; Welch and Dixon, 1991x; Redfield and Krishnan, 1992; 
Welch, 1992). If details are given on the transformation, it appears that the conversions 
basically are realized as a matching process, i.e. they are search–based. Such 
approaches are known to be computationally unattractive, especially for complex 
systems. Furthermore, severe limitations are imposed upon the type of bond graphs 
that can be processed (e.g., all junction structures must be non–cyclic). As explained in 
section 4.1, we require a conversion algorithm, which is capable of transforming more 
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complex bond graph models. As far as we know, no such algorithm has been 
developed. 

4.5.2 Inquiry 

The basic approach we take in the transformation algorithm is to iteratively expand 
bond graph junctions into series– and parallel constructs of D– and Y–junctions. For 
example, we try to expand the electrical bond graph model of figure 4.7 into a [series 
construct of an Se, an R and a [parallel construct of a C and a [series construct of an I, 
an R and a C]]].  

 

FIGURE 4.7 Interpretation of a bond graph as a nesting of  
series and parallel constructs 

Terminology 
When multiport elements are present, the whole model cannot be converted in this 
way. Consider for example the model of figure 4.8. The electrical and the mechanical 
junction structure need to be processed separately. We use the term unit for the partial 
junction structures that are processed separately. So each largest non–disjoint junction 
structure fragment of a graph is said to form a unit. Note that all ports contained in one 
unit always have one and the same domain. Therefore, we can speak of an electrical 
unit, a mechanical unit, etc. 

A second point is that in non–mechanical domains, the 0–junction is expanded in a 
parallel connection, whereas in mechanical domains this is the case for the 1–junction. 
This implies that we cannot speak of one junction type that will become a parallel 
construct in the iconic diagram. This can be overcome by switching over to the 
terminology of P–junctions and S–junctions, as introduced by Thoma (1975). The P–
junction is equal to the 0–junction in non–mechanical domains, and equal to the 1–
junction is mechanical domains. The S–junction is the dual of the P–junction. This has 
been indicated in figure 4.8. 
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Thirdly, it is handy to have a word to denote the model fragment that is treated as one 
piece in a series or parallel construct. We will use the term branch for this, see figure 4.8
. Each branch has one unique entrance connection, i.e. the connection between the 
model fragment of the branch and the rest of the unit. Note that the entrance 
connection is considered not to be part of the branch. 

The last piece of terminology that is introduced here is an auto–reference port: this is a 
port of a bond graph subsystem that will be represented in the iconic diagram by an 
autoreference terminal. In other words, it is a port of which the across variable is 
defined with respect to the global reference. Typical examples of autoreference ports 
are the rotation port of a motor, the port of a translational mass or of a rotational inertia 
and the port of a rotational friction element. 

 

FIGURE 4.8 Units, P–junctions, S–junctions and branches 

The above definitions only introduce terminology; they provide a shorthand for the 
scope of the algorithm presented hereafter. They are not used to actually describe a 
graph. This is unlike the previously introduced concepts of D–junctions and Y–
junctions. Furthermore, the definitions of auto–reference ports, P–junctions, and S–
junctions are to be used in relation with bond graphs only.  

4.5.3 General characterization of expansions 

Using the above terminology, we can characterize the series–parallel expansion more 
concisely. The iterative expansion consists of three elements: 

– expansion of a simple branch, i.e. a branch of which the entrance connection is 
connected to the single subsystem port of the branch. 

– expansion of a series branch, i.e. a branch of which the entrance connection is 
connected inside the branch to an S–junction  
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– expansion of a parallel branch, i.e. a branch of which the entrance connection is 
connected inside the branch to an P–junction  

These are worked out successively. 

Expansion of a simple branch 
Simple branches are processed as specified in table 4.4. 

  p = auto–reference port  p = non–auto–reference port 
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TABLE 4.4 Expansion of simple branches 

Note that this expansion is a translation from bond graph ports to iconic diagram 
terminals. The heads and tails are called dangling knots as long as no other 
connections are made to them than the ones specified in table 4.4. Dangling knots are 
added to processed constructs so that it is clear whether a head or tail of a construct 
has been further processed in an embracing construct; if this is not the case, than the 
head or tail has just one connection.  

Expansion of a series branch 
The standard expansion from S–junction to series construct is characterized in figure 
4.9. There is an additional issue that needs attention during this expansion: the 
ordering problem. 
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FIGURE 4.9 Standard expansion of an S–junction into a series construct 

Ordering  
The way in which branches connected to an S–junction need to be ordered in the series 
connection is not explicitly specified in the bond graph. Hence, there is some freedom 
in choosing the order of branches in a series connection. For example, in figure 4.9, we 
have chosen the order ‘head — branch j — branch i — branch k — tail’. The order 
‘head — branch j — branch k — branch i — tail’ could equally well have been 
chosen.  

However, ordering of branches is not completely random; the following ordering rules 
are followed: 

1 place branches with entrance connections oriented towards the S–junction closer to 
the head of the series construct than branches with entrance connections oriented 
away from the S–junction. 

2 let branches of which the head or tail is a global reference appear at the appropriate 
outer end of the chain. 

3 locate branches connected to the S–junction that represent sources or transducers 
as close to the appropriate outer end of the chain as possible. 

Hence, the ordering problem is: how to order the branches of a series connection in a 
repeatable fashion conform the set of ordering rules. To solve this, the collection of 
bonds connected to a S–junction in the bond graph has to be ordered in some way, in 
accordance with the rules. There are two ways of doing this. The one that is 
straightforward and currently applied is to attribute a numeric order to the bonds 
connected to a junction. A major drawback of this is that there is no natural way in 
which the designer can control the order. A more intuitive way of ordering seems to be 
to derive the required order from the relative topographical position of the branches  
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connected to the S–junction; the first criterion is left to right, the second (in case 
horizontal position is about equal) top to bottom. The fact that applying this ordering 
principle to natural bond graph drawings leads to an ordering that complies well with 
the formulated rules gives confidence that this principle is indeed valid and preferable. 
However, for this solution to be repeatable, the automatic visualization (see section 
3.5) of bond graph models should work accordingly. This makes implementation of 
this solution non–trivial. 

Expansion of a parallel branch 
The expansion from P–junction to parallel constructs has been generally characterized 
in figure 4.10.  
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FIGURE 4.10 Expansion of a P–junction into a parallel construct 

If the head or tail of any of the processed branches of the P–junction is a global 
reference, the head or tail of the newly created construct also becomes this global 
reference.  

4.5.4 Remaining issues 

There are two remaining issues concerning the expansion of individual branches: 

1 the cycle treatment problem, and 
2 the reference placement problem. 

Cycle treatment 
Consider the electrical bond graph model of figure 4.11, which contains a cycle. 
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FIGURE 4.11 Cyclic bond graph junction structure 

The iterative solution indicated above succeeds if expanded junctions deliver a head 
and a tail. For junctions contained in a tree–like bond graph fragment, this is the case. 
However, if there are cycles in the graph consisting of junctions and bonds only (like 
here), the approach fails. Because of the cycle, a head and a tail of a junction in the 
cycle cannot be found without special measures. Hence, junctions in cycles cannot be 
treated in the same way as junctions not contained in a cycle. 

If this problem is examined more closely, three main observations can be made: 

– a P–junction contained in a cycle (i.e. the 0–junctions in the cycle of figure 4.11) 
always represents a knot. 

– an S–junction contained in a cycle always represents a series construct of all 
branches not contained in the cycle, i.e., all connected fragments adjoint to the 
junction which are not contained in a cycle. 

– a bond contained in a cycle of a fully simplified bond graph always represents a 
connection between a knot (from the P–junction to which the bond is connected) 
and the head or tail of a series construct (from the S–junction to which the bond is 
connected). 

Hence, we can process cycle junctions in the following way. We remove all bonds 
contained in a cycle, and convert the remaining (tree) bond graph fragments using the 
series/parallel approach. We make sure that a P–junction contained in a cycle will be 
properly transformed to a knot, and an S–junction to a series connection. We obtain 
the correct iconic diagram by restoring the removed bonds between the corresponding 
transformed model fragments. Figure 4.12 depicts how the example bond graph model 
with cycle is processed. 
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FIGURE 4.12 Processing of the bond graph with cycle 
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Global reference placement  
A properly defined iconic diagram includes global references for each unit. When 
examining these diagrams more closely, two things can be noted with respect to the 
places at which global references occur: 

– there are specific places where a global reference cannot occur, namely in a series 
construct that is contained in a cycle, in a series construct that begins and ends 
with autoreference terminals and in a parallel construct between a knot and a 
global reference. 

– global references are preferably located next to the lower terminals of sources and 
transducers. 

The transformation algorithm should comply to these points. So the problem of global 
reference placement is determining the terminals to which a global reference should be 
connected such that a correct natural iconic diagram is obtained.  

Consider a correct iconic diagram. It is always possible to interpret the place of the 
global reference in such a diagram as the closure of a series connection of a particular 
subsystem and other constructs. Figure 4.13 presents an illustrative example of this.  
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FIGURE 4.13 Interpretation of global reference 
a) original iconic diagram 
b) straightforward formal description 
c) as a series construct of a voltage source and a parallel construct 

This interpretation has two implications. One is that when the global reference is 
removed, places to which the global reference was connected remain recognizable as 
dangling knots. The second implication is that the location of the global reference is 
coupled to a particular subsystem with which the series connection starts or ends. 

The way in which the conversion algorithm is started has not been specified yet. The 
above analysis points out that this should be utilized to solve the global reference 
placement problem: 
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1 start conversion of a bond graph unit in terms of a series connection. This 
guarantees that the dangling terminals that remain after expansion should be 
connected to a global reference.  

2 choose the places from which conversion starts equal to subsytem ports or 
junctions to which a global reference definitely should not or preferably should be 
connected. This gives control over the places where global references will occur. 

Therewith, all issues related to the transformation from bond graph to iconic diagram 
have been addressed. 

4.5.5 Outline 

The conversion algorithm consists of the following steps: 

1 Verify the bond graph formulation upon correctness and consistency, i.e. make sure 
that it is connected properly and is physically realizable (see Perelson 1975a). 

2 Sort ports according to preference as starting point:   
1  ports of junctions contained in cycles involving bond graph junctions only  
2  autoreference ports  
3  ports of sources and transducers  
4  remaining ports 

3 Remove bonds contained in cycles involving bond graph junctions only. 
4 Take the first unprocessed port of the sorted list of ports. If this port is not 

contained in a junction, then translate the bond graph port to iconic diagram 
terminals according to table 4.4 and obtain the connected branch.  

5 Process the branch as follows. Label the ports of the branch ‘processed’. If the 
branch is a   
- simple branch: translate the bond graph port into iconic diagram terminals 
according to table 4.4.  
- not a simple branch: obtain the connected subbranches. For each of these 
branches, do step 5 (i.e. iterate). Collect the heads and tails of the subbranches. If 
the branch is a:  
+ series branch: compose a series construct as specified by figure 4.9, thereby 
accounting for ordering.  
+ parallel branch: compose a parallel construct as specified by figure 4.10.  

6 If there remain unprocessed ports: goto step 4. 
7 Restore the cycle bonds that have been removed in step 3 between the now 

transformed model fragments. 
7 Add global references to each unit and connect them to all dangling knots in the 

corresponding unit. 
8 Simplify the resulting bond graph as far as possible. Appendix B lists 

simplification rules. 
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4.6 Conclusions 

For describing iconic diagrams formally, two new concepts were introduced: 

– the Y–junction, suitable for describing a knot. 
– the D–junction, suitable for describing a difference between two knots. 

These concepts are sufficient to capture all specific information incorporated in iconic 
diagrams, as was shown in table 4.3.  

Conversions between model formulations should be behavior preserving. In general, 
conversions will not preserve structure and partitioning of the model. Conversions 
between iconic diagrams and bond graphs are a somewhat special case, as these 
conversions can be realized while preserving model partitioning. 

When transforming an iconic diagram into a bond graph model, the main problem is 
how to properly remove all references. This involves the proper choice of one global 
reference for each domain and the proper choice of orientation for bonds in the bond 
graph. The solution to this problem is to incorporate an orientation analysis in the 
transformation. During orientation analysis, the goal is to assign a power flow 
orientation to each power connection contained in the iconic diagram. This analysis is 
comparable to causality analysis. It allows detection of subtle structural properties of 
iconic diagram models, like nodic substructures. Using orientation analysis, iconic 
diagrams can automatically be analyzed upon correctness and transformed into bond 
graph models. 

Conversion from a bond graph model to an iconic diagram can be done iteratively by 
expanding bond graph junctions into parallel and series constructs. Three issues need 
attention in this: 

– ordering; the order of subsystems that appear in a series connection of an iconic 
diagram is constrained. Information about this order is not explicitly available in a 
bond graph and needs to be generated appropriately. Rules for this are indicated. 

– cycle treatment; bond graph junctions contained in a cycle consisting of junctions 
and bonds cannot be interpreted straightforwardly as representatives of series or 
parallel constructs. This can be solved by removing cycle bonds before processing 
and restoring them after processing. 

– global reference placement; a bond graph generally does not include global 
references. Hence, these need to be generated during transformation and included 
correctly in the iconic diagram. By strategically choosing the way in which 
conversion of bond graph fragments is started, this can be controlled. 





Chapter 5 

Polymorphic modeling of engineering systems 

5.1 Introduction 

Building a model of a real world, continuous–time system involves the character–
ization of this system by a set of state variables x and by a set of (possibly time–
varying) relations f ( , ). t  on these state variables and environmental variables u. These 
relations are supposed to be satisfied at all time instances. By definition, the model that 
results is an abstraction of the real world system, in the sense that it intends to only 
incorporate properties of the system that are of interest and relevant, given the problem 
context. If this intention is met, i.e. if we have a competent model of the system, we 
can reason about and draw conclusions for the real world system based on the model. 
There are two main purposes (types of problem contexts) to do this: 

– to understand an existing system (the modeling context) 
– to define a system to be created (the design context) 

For both purposes, it is important to be able to evaluate the competence of the model. 
In this thesis, the emphasis will be on the design context. However, the material 
presented in this chapter also has relevance in a modeling context. 

Stated informally, the above implies that model building is the designation of a system 
in terms proper for the problem context. Therefore, the heart of model building is 
formed by three aspects, as can also be shown in a theoretic model of the modeling 
process (De Vries and Breedveld, 1992):  

– the decomposition of the system into interrelated subsystems 
– the classification of these subsystems and relations 
– the representation of the resulting model.  

Here, a subsystem is not necessarily a physical, concrete part, but it can also be of a 
conceptual nature. Also, it should be noted that decomposition and classification are 
dialectic concepts, that is, one cannot be considered without the other. In order to 
make a proper decomposition, the resulting parts need to be classified usefully, and 
conversely, in order to be able to classify, one generally has to distinguish a part that is 
considered.  
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Inside a computer–based modeling system, the decomposition, classification and 
representation of a model is determined by the data structures in which the model is 
maintained. Data structures are designed on the basis of structuring principles or 
implementation techniques that are available in computer science. Hence, the form that 
models have in a computer–based modeling tool is influenced by implementation 
techniques incorporated in the system. This statement is analyzed in detail in this 
chapter. The analysis is illustrated by showing what form a particular example system 
has in a system that incorporates the implementation techniques considered. The 
example system is largely the same as the one of chapter 3: a dc–motor, that is fed by a 
dc power supply, and that drives a gearbox that is connected to a flywheel (the load). 
The dc–motor model incorporates electrical inductance and resistance as well as 
mechanical inertia and friction. Different forms of this model are derived in Appendix 
D. 

When a real world system is properly decomposed, when the subsystems have been 
meaningfully classified and when an insightful representation is made, the purpose for 
which the model was created is more easily fulfilled and evaluation of competence is 
less difficult. Consider as an example two different forms of models, namely the 
(mathematical) system characterization and bond graphs. 

The system characterization f x u( , , )t  can be regarded as the most straightforward and 
plain form of a model. A model with such an internal structure does not explicitly 
incorporate the decomposition into subsystems and their classification, and it is 
represented by means of mathematical equations. This is depicted in figure 5.1, both in 
general terms and for the example system. While this form of a model may be 
powerful for solving problems by means of calculation, it is not very suitable for the 
step ahead of that, namely for obtaining a good model of a complex system; it will not 
provide much insight and will not be easily understood. This holds for both a 
modeling and a design context. 

f x u( , , )t     
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FIGURE 5.1 Plain model 
a) in general terms 
b) worked out for the example system 

Bond graphs (Paynter, 1961; Breedveld et al., 1991) by contrast have proven to be 
well suited in this respect, at least in a modeling context. When using this language, 
the criterion on which to base the decomposition is clear and straightforward, namely 
the energetic behavior. Furthermore, the classification of the resulting elements is 
natural and rigorous, and most of all it is relevant from the perspective of engineering. 
Thus  
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when dealing with energy related aspects such as dynamic behavior, bond graphs 
support the making of good decompositions and classifications. At the same time the 
notation provided by Paynter and others (Karnopp and Rosenberg, 1968; Breedveld, 
1982) features a powerful graphical representation. It depicts decomposition in a easily 
understandable way by means of a network, and properly reflects the classification of 
the elements at the same time. Finally, the bond graph representation allows flexibility 
in its attributes: it can range from qualitative to quantitative, from non–causal to 
causal, from conceptual to physical, and from non–oriented to fully oriented. Hence, 
bond graphs incorporate powerful concepts for decomposition, classification and 
representation. Therefore, they are helpful in building good models. 

From the foregoing it follows that support systems for model building should 
incorporate implementation techniques that enable the use of powerful decomposition, 
classification and representation concepts. Available techniques that have been 
exploited in this sense are parametrization, typing and port–based interfacing; they are 
discussed in section 5.2.1 to 5.2.3 respectively. A detailed evaluation in section 5.3 
shows that contemporary modeling systems do not support classification properly. 
Therefore, a new concept, polymorphic modeling, is introduced in section 5.4 to 
resolve these shortcomings. Section 5.5 presents examples of features that a 
polymorphic modeling system has. The following sections, 5.6 and 5.7, are devoted to 
discussion of system design and application issues, respectively. Conclusions are listed 
in section 5.8. 

Except for the system design and application issues, the material of this chapter 
basically has been discussed by De Vries et al. (1993). 

5.2 Existing techniques 

Because bond graphs form a powerful model building environment, and also because 
the ideas presented here were largely based on experiences with bond graph modeling, 
this modeling environment is taken as a reference for required support of 
decomposition, classification and representation. However, this does not imply that 
application of the presented material is limited to a bond graph environment, as 
becomes clear in chapter 6. Implementation concepts are also evaluated with respect to 
reusability of models and to possibilities for organizing the model library, as these two 
aspects are important measures of the quality of support for model manipulation and 
model maintenance. 

5.2.1 Parametrization 

A first and rather obvious way of improving model specification is to parametrize the 
system characterization. In a parametrized model, (most) constant numerical values are 
specified in terms of symbolic entries (typically letters) that are separately given 
values. This is expressed in figure 5.2a by means of the parameter vector θ . In a  
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system like TK SOLVER (Universal Technical Systems, 1988) models are specified in 
this form. It is interesting to see that, although parametrization seems straightforward, 
it took a long time before commercial CAD systems became available that 
incorporated this technique. 
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FIGURE 5.2 Parametrized model 
a) in general terms 
b) worked out for the example system 

Introduction of this technique is important, as it demarcates the transfer from models 
that describe one particular instance of a real world system to models that describe a 
class of instances. Therewith, parametrization introduces a primitive form of classifi–
cation. A second major improvement is that parameters represent the meaning of an 
attribute, rather than the value. Also, it results in models that show more structure, as 
expressions in terms of parameters are, contrary to direct numerical values, not worked 
out. At most, these combinations of parameters are replaced by a new parameter, 
which is then representative for the combination. Finally, parametrization of course 
leads to models that are more reusable. 

In summary, parametrization is beneficial, because: 

– it provides for a primitive form of classification. 
– it improves the representation by showing the meaning instead of the value of 

attributes, and by showing more of the model’s internal structure. 
– it facilitates reuse of models. 

5.2.2 Typing 

Early systems used to support modeling, of which ACSL (Mitchell and Gauthier, 1976) 
is a well known example, were mainly based on a technique called “macro–modeling” 
(see figure 5.3). A macro is a definition of a subsystem, and consists of two parts: the 
heading and the body. The body describes the internal structure of the subsystem. The 
heading specifies the macro name and two kinds of formal arguments: the parameters 
q (i.e., value–arguments in computer science terms), and the inputs and/or outputs of 
the subsystem (var–arguments, also called reference arguments). Input and output 
variables are denoted with vio here. A subsystem defined in this way can be 
incorporated in a model (instantiated) by invoking the macro name with the actual 
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arguments only. The top level model might be viewed as a special kind of subsystem, 
namely one where the var–arguments are equal to environmental variables.  

Macro–modeling can be regarded as a specific form of what is generally known as 
typing. Typing is the categorization of objects according to their usage and behavior. 
The key characteristic of typing in computer science is that the definition of an object 
(in this case a subsystem) is separated from its usage. This is done in order to enforce 
correctness of object usage and to encapsulate local information of an object 
(Cardelli and Wegner, 1985). To enable this, the type definition of the object consists 
of two parts: the interface part (the heading in case of macros) specifies the 
information that has to be provided at the moment of instantiation, and the 
implementation part (the body) contains the encapsulated local information of the 
object. 

When a modeling tool allows to define a subsystem type, it means that this subsystem 
can be instantiated and treated as a single part. Consequently, the internal structure of a 
model can be expressed in terms of subsystems. In other words, it can be specified as 
an aggregation of parametrized, encapsulated (lower level) subsystems. As a result, 
the decomposition of the model becomes explicit. Not only the top level model, but 
also subsystems can be expressed in terms of lower level subsystems (i.e., the “boxes 
within boxes” idea). This implies the complete model takes the form of a ‘part–of’ 
hierarchy. Tools that feature this are therefore said to support hierarchical modeling. 
These effects of typing on the form of a model are depicted in figure 5.3a. In this 
figure and later on, the rectangles around subsystems symbolize typing. 

With the advent of SIMULA (Dahl and Nygaard, 1966), the technique of typing was 
given an important extension: SIMULA allowed a type definition (named a class here) to 
be expressed as a specialization (a subclass) of an other type definition. This 
introduced the notion of inheritance into computer science: a type automatically 
inherits the properties of its supertype, which may then be extended or overridden. 
While this appeared very powerful in a programming context, it had only moderate 
influence on modeling tools. The reasons for this are examined in section 5.3. (Note: 
subtyping should not to be confused with the possibility to define a type as a 
composition of other types. This construct does not introduce inheritance, because it 
lacks means for extension and overriding of attributes or behavior.) 

Application of typing in computer based modeling tools is useful, because: 

– it makes decomposition explicit by enabling the model to be organized in a part–of 
hierarchy. 

– it extends classification by giving a type name to subsystems. 
– it improves representation of models by encapsulating the internal structure of 

subsystems. 
– it provides for reusability of complete subsystems. 
– it enables the subsystem library to be organized around (related) types. 
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PROGRAM ExampleSystem 
  omega = n (1/Iload INT(tload)) 
  DCm(ie, tm, S(t), omega, Re, Le, Rm, Im) 
  tload = n tm – Rload omega 
END 
 
 
 
MACRO DCm (OUT i, tau; IN v, omegamot; 
Rel, Lel, Rmot, Imot) 
  Gyrator (vmot, tmot, i, omega, Km) 
  vel = v – Rel i – vmot 
  i = 1/Lel INT(vel) 
  tau = tmot – Rmot omega – Imot 
DDT(omegamot) 
END 
 
 
MACRO Gyrator (OUT e1, e2; IN f1, f2; r) 
  e1 = 1/r f2 
  e2 = 1/r f1 
END 

 

    a)      b) 

FIGURE 5.3 Model in terms of encapsulated subsystems 
a) in general terms 
b) worked out for the example system 

5.2.3 Port based interfacing 

The interface part of macros very much resembles those of subroutines in 
‘conventional’ programming languages (e.g., PASCAL). When instantiating a subsystem 
in an aggregation, the inputs, outputs and parameters (actual arguments) are variables 
that are declared in the aggregation in which the subsystem is embedded, i.e. the 
‘superpart’. In other words, the actual arguments are passed from the superpart down 
to the subsystem and processed locally.  

In case of port based interfaces, the inputs and outputs of a subsystem (var–
arguments) are declared as a special kind of variable, namely as ports (or also 
terminals). These variables are denoted as vp here. When instantiating a subsystem in 
an aggregation, the inputs and outputs (actual arguments) are port variables that are 
declared in the  
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subsystem. In other words, port variables can be incorporated in relations of the 
subsystem’s superpart. The conceptual difference with non–port based interfaces is 
that the variables vp are ‘popped up’ from the subsystem to the superpart, instead of 
passed down from the superpart to the subsystem (as the variables vio in macro–
modeling). 
 
 

 
 
    a)      b) 

FIGURE 5.4 Model in terms of a network of subsystems 
a) in general terms 
b) worked out for the example system 

Due to this change, an aggregation of subsystems is simply described in terms of 
connections, for a connection is a relation stating that the variables of the two involved 
ports are equal. It is useful then to restrict the internal structure of subsystems to be 
either a pure aggregation of lower level subsystems, called a submodel, or a pure set of 
equations, called an elementary model (Broenink, 1990). When this is done, it is  
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possible to represent a submodel as a graph or network of interconnected subsystems. 
In case of an elementary model, the internal structure will define the constitutive 
equations. This is depicted in figure 5.4a, where the ports are reflected by ‘bulbs’. 

When using non–port based interfaces, subsystems are incorporated in models in the 
form of procedure calls which process the input and deliver output. This reflects a 
process–oriented approach towards model building: a model is built by stating the 
processes that take place. This approach is appropriate for dynamic, elementary 
models, for these indeed are characterized by processes. However, model building is 
generally concerned with the decomposition of a subsystem into smaller subsystems 
that are interconnected in some way, until some set of basic components is found. This 
typically reflects an object–oriented approach, and port based interfaces have enabled 
modeling tools which support this. The first modeling tool that incorporated port based 
interfaces was DYMOLA (Elmquist, 1979). Most of the currently available bond graph 
oriented systems (for example ENPORT (Rosencode Associates, 1990) and CAMAS 
(Broenink, 1990)) have included a variant of this technique.  

Note that Paynter’s reticulation (Paynter, 1961) provides a ‘smooth transition’ 
between the object–oriented and the process–oriented approaches. The basic bond 
graph elements specify idealized physical behavior (phenomena), and therefore 
‘internally’ require a process–oriented approach. But by classifying these as 
conceptual elements, it becomes possible to treat the idealized physical phenomena as 
‘objects’, which are incorporated in a conceptual network. Such a network in its turn 
mostly describes a (tangible) component, i.e. a submodel in a word bond graph. Word 
bond graphs typically are aggregations of components, and are made using an object–
oriented approach. So the network of basic elements forms an intermediate layer 
between the model part that requires a process–oriented approach (inside the elements) 
and the part that requires an object–oriented approach (the aggregation of 
components). Typing and port based interfacing together provide computer–based 
model building tools the capability to fully support reticulation. 

Port based interfaces improve computer–based modeling support, because: 

– they improve decomposition by enabling an object–oriented model building 
approach. 

– they allow representations of a model in the form of a network, which can be 
depicted graphically. 

– they enable the subsystem library to be further organized according to port 
attributes. 

5.3 Evaluation 

Application of parametrization, typing and port based interfacing enables computer 
based modeling tools to fully support model decomposition and representation as done 
in bond graph modeling. Systems such as CAMAS and ENPORT exemplify this. CAMAS 
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also supports classification to some extent: each subsystem is declared as an instance 
of a certain class. However, in these (and comparable) systems, there is a one–to–one 
correspondence between a subsystem’s type and its internal structure. This means that 
for each single subsystem type there is a unique form of instances. Stated more 
abstractly, types are monomorphic (of one form) in these systems. This characteristic 
is the cause for the fact that it is not possible to define generic subsystem types in 
available modeling systems. For example, it is impossible to define a general model 
type ‘DCmotor’ that can be incorporated in a network model and that covers detailed 
models of both Permanent Magnet DC–motors (PMDC) and wound DC–motors. 
Another example is that a type ‘MechanicalFriction’ that can represent both Coulomb 
friction and viscous friction cannot be defined. This is due to the difference in their 
internal structure. In (bond graph) modeling however, the invocation of generic 
models that are specified by different internal structures is a common procedure. 
Above the impossibility to define generic subsystems, it is also impossible to represent 
a subsystem as a specific instance of a more general class. Being able to do this is 
desirable, as generalization is utilized often when reasoning about a model. These two 
limitations show that available modeling systems do not support classification 
properly. 

One might guess that the use of type inheritance as introduced in SIMULA would solve 
for this problem. Type inheritance means that the definition of some types, the 
subtypes, automatically includes (‘inherits’) definitions made for a designated other 
type, the supertype. In the subtype, additional definitions are made and/or inherited 
definitions are overridden. Hence, applying type inheritance allows the creation of 
generic types that capture common properties of multiple subsystem types, and it 
implies that a ‘kind–of’ relation can be described between types. This shows that type 
inheritance allows defining types in terms of other types, i.e., type inheritance is a 
form of subtyping. In SIMULA and other object oriented programming languages, the 
inheritance primarily involves operations defined in an object class. 

In modeling, the major part of a type definition involves the description of the internal 
structure. Thus it seems attractive to enable inheritance of internal structures. 
However, internal structures of two subtypes with a common supertype are often not 
shared, so that inheritance is hardly advantageous. Coulomb friction and viscous 
friction, for example, have completely different constitutive equations, i.e. different 
internal structures. But even if internal structures are largely shared, type inheritance is 
not very powerful. Consider for example the internal structures of a PMDC motor and 
a shunt motor, see figure 5.5. The electrical parts of these internal structures are 
different. It is not so much a matter of extending or overriding the electrical part of an 
internal structure defined in a common supertype, but rather a matter of reconfiguring 
such a structure, using additional parts. Inheritance is not suitable for this 
(Aksit and Bergmans, 1992). 
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   a)       b) 

FIGURE 5.5 Differing internal structures for a DC motor 
a) PMDC motor  
b) shunt motor 

Hence, generic subsystem types created for the purpose of type inheritance can in 
general not define a useful internal structure. Instead, they specify subsystem types 
which define some properties but have no internal structure. In computer science 
terms: type inheritance provides for abstraction of subsystem types. In other words, 
such abstract subsystem types allow to gradually define common properties of 
subsystems, and thus enable subsystem libraries to be organized in a kind–of 
hierarchy. This is a useful feature for development purposes (Rosenberg et al., 1992). 
From a modeling perspective however, we think it is less valuable. A model 
containing a generic (i.e. abstract) subsystem type is only partially specified; it can for 
example not be simulated, and things like main eigen frequencies cannot be 
determined. Also, this form of inheritance leads to a hierarchy in which an abstract 
type may have two different kinds of subtypes: subtypes that are instantiations of the 
abstract type, and subtypes that are refinements of the abstract type. Mixing these two 
different kinds of type relations is not desirable, because it obscures classification. 
Therefore, we conclude that type inheritance still does not give computer–based 
support the capability to capture classification properly. For it still is impossible to 
define, represent and manipulate fully specified subsystems which have a generic type. 
In the next section, a solution for this problem is proposed. 

5.4 Polymorphic modeling 

The basic reason why classification is not supported properly is that the inheritance 
mechanism enables abstraction, but leads to types that are not fully specified. In other 
words, the combination of abstraction and typing is too restrictive. This has been 
shown above. Once this is clear, the solution is easy: an abstraction barrier should be 
defined, which separates properties of (generic) subsystem definitions that are 
inherited by subtypes from properties that will not be inherited. This usage of an 
abstraction barrier is analogous to a technique known as modularization in computer 
science. Modularization is a program structuring principle that was most consequently 
applied in MODULA–2 (Wirth, 1982).  
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The abstraction barrier is defined here as the separation between essential properties 
and incidental properties of a subsystem. Essential properties are the properties of a 
subsystem that are ‘typical’, i.e., which are necessary to classify the subsystem. 
Essential properties are defined in the subsystem type (as before), and are inherited by 
subtypes. By contrast, incidental properties of a subsystem are not typical, and may 
take varying forms. Incidental properties are no longer defined in the subsystem type 
and therefore not inherited, but are defined in a specification of the subsystem type. 
This indicates that a complete model will exhibit two choices for each subsystem: its 
essential properties, reflected by the type, and its incidental properties, reflected by the 
specification. Furthermore, it follows that one type may have more than one 
specification. In figure 5.6, the consequences for the model of the introduction of an 
abstraction barrier are reflected by the dashed lines.  

There are two main reasons why a type may have more than one specification. Firstly 
this occurs because one specification describes the behavior of a subsystem in more 
detail than the other, i.e. they have a differing resolution. In the case of the PMDC 
motor for example, both a specification containing only a gyrator can be defined and a 
specification that includes mechanical and electrical ‘parasitic effects’. The second 
reason is that the type has instances with differing behavior, although the difference in 
behavior is not essential. For example, Coulomb friction and viscous friction are 
described by different constitutive equations, but both specify mechanical friction. 
Which specification should be chosen for a subsystem in a model then depends on the 
context for which the model is used. 

By combining subtyping with modularization, it becomes possible to define 
instantiations of an abstract type by means of a specification, and to define refinements 
of an abstract type by means of a subtype. Hence, this combination improves 
classification; it enables many different forms of instantiations of a typed subsystem. 
In other words, it supports polymorphic models of a subsystem. (Note that the 
polymorphism relates to description of the subsystem, not to its formulation.) This 
leads to the following definition. 

Polymorphic modeling is the combined application of modularization and subtyping 
during model building, that is, the division of a subsystem description into a subsystem 
type and a subsystem specification, and the expression of a subsystem type in terms of 
one or more designated other types. 

In this thesis, a particular form of subtyping is considered, namely single inheritance: a 
subsystem type is a specialization of one other subsystem type, and inherits its 
definitions. Single inheritance is the most simple and straightforward form of 
subtyping. 
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FIGURE 5.6 Polymorphic modeling: model in terms of modular, classified components 

The concept of polymorphic modeling is useful, because: 

– it improves classification of subsystems by means of generic as well as specific 
typing. 

– it completes representation of models by separately depicting essential and 
incidental characteristics. 

– it further enhances reuse, because subsystem types and subsystem specifications 
can be reused separately. 

– it enables the subsystem library to be organized in a kind–of hierarchy, such that 
subsystems are specialized incrementally downwards. (That is, in case of single 
inheritance.) 

In the next section, these features are illustrated.  

5.5 Consequences 

In this section, examples are given which show the consequences of applying 
subtyping and modularization during model building. 



5.5 Consequences 101 

5.5.1 Support for evolutionary model building approach 

Although modeling and design are recursive and interactive processes, the global 
working direction is downwards: one usually starts with decomposing the top level 
model into subsystems, and in the next step it is further developed by decomposing 
these subsystems again, and so forth. Thereby, the number of hierarchical layers of the 
model expands gradually. This maps exactly to the modularization introduced above: 
in the first step, the subsystems types of the top level model are determined, in the next 
step the proper specification for each of these subsystems is described in terms of 
lower level subsystem types, etc. A polymorphic modeling system separates types and 
specifications, and thus is well suited to support a top–down approach.  

In this way, one uses the property that types can have specifications which differ in 
resolution. The strategy is to initially define properties at a non–detailed level, and 
only later be more specific. In case of monomorphic types this approach cannot be 
supported, because in order to determine the type of a subsystem, one has to make a 
choice for the internal structure. One could initially ignore the internal structure (i.e. 
use a type with an empty or completely wrong internal structure), and adjust it later. 
But this is more like a way around the lack of support! One has to make too much of 
an effort to obtain only the reusable properties of a related type. Also, in case of a new 
internal structure one has to create a new type with a new identity in order to not lose 
the empty or old type. 

Using polymorphic modeling, the model builder can equally well start describing a 
specification of some subsystem, and after that select the type to which this 
specification belongs. In other words, a bottom–up approach is possible as well. 
Moreover, a mix of working in top–down and bottom–up fashions is possible. For 
example, the model builder can start top–down by developing the top level model and 
proceeding with specifying one of the subsystems (i.e. into several hierarchical levels). 
On basis of the insight obtained thusly, it can be decided to continue bottom–up by 
adjusting the top level model again, i.e. making a new type for the just defined 
specification, and so forth. In practice, any model building process will require such a 
mixed approach due to its evolutionary nature. A real process will never be purely 
top–down or bottom–up, and computer–based tools should be adjusted to that. 
Polymorphic modeling supports such an evolutionary approach. 

5.5.2 Hierarchical subsystem library 

Modularization and subtyping in the form of inheritance has two important 
consequences for libraries of computer–based modeling tools: the types are organized 
in a hierarchy, and for each type available specifications are listed. In this way, 
polymorphic modeling imposes a coherent structure on the collection of subsystems 
contained in the library. For illustration purposes, it is shown how a subsystem type 
hierarchy might be made for bond graph elements in figure 5.7. Other researchers have 
presented implementations of similar hierarchies (MacFarlane, 1989; Rosenberg et al., 
1992). Note that other ways of organizing the hierarchy of bond graph elements can be 
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thought of (e.g. Breedveld, 1984). The reasons for choosing this particular 
organization are given in section 5.7.  

 

FIGURE 5.7 Partial hierarchy of bond graph elements 

Analogous to the situation in programming (Cardelli and Wegner, 1985), we expect 
that the ease of reusing common properties is incidental to the clarity and conceptual 
parsimony provided by the coherent structure. In terms of model libraries, the main 
advantage of polymorphic modeling is not the additional reusability, but rather that the 
library is structured such that it is easy to understand and maintain by means of a 
hierarchy. Especially when the number of models in the library is large, such as for 
example in the OLMECO project (Olmeco Consortium, 1993), this is important. 
However, it does require that the hierarchy be built carefully. It should factor out  
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common properties of subsystem types stepwise, such that meaningful generic 
subsystems arise. We will further treat this issue in the section 5.7. 

5.5.3 Creation of alternatives 

Above, it was shown that polymorphic modeling leads to a hierarchy of subsystems, 
which can be depicted in a tree. An example of this is shown in figure 5.7. This 
implies that apart from the root, each subsystem has a more general supertype, and 
apart from the leaves, each subsystem has more specialized subtypes. Now an 
interesting perspective opens up: subsystems can be generalized and/or specialized. 
These manipulations can be done without actually changing the network of the model. 
Also, one can vary between specifications of a subsystem. Both options are possible 
only when polymorphic types are available, and they are interesting in order to create 
alternative models (design solutions).  

Consider, for example, the system depicted in figure 5.8a. Suppose that the bond graph 
elements are incorporated in a hierarchy as proposed in figure 5.7. In this model, the 
second transformer is specified as a gearbox (figure 5.8b). However, if a specification 
for a harmonic drive is also available, we can create an alternative model without 
changing the network by choosing this specification (figure 5.8c). Alteration of the top 
level network is not needed for that. Also, the model can be partially dualized by 
subsequently generalizing and specializing the elements of the involved model 
fragment (figure 5.8d). The partial dualogue of the original model is a useful 
alternative, see figure 5.8e. For no elements shall the number of ports change, thus 
again no alterations of the network are needed. Furthermore, we see that the 
knowledge needed to create a dualogue is embedded in the structure of the hierarchy. 

5.6 Design issues 

Incorporating polymorphic modeling in computer–based systems gives rise to some 
system design issues that need to be discussed before implementation can be 
considered. This is the topic of this section. 

5.6.1 Modularization 

One way of looking at a type is to say that it is the interface layer between the inner 
world of a subsystem, i.e. its internal structure, and the outer world, i.e. the model in 
which it is incorporated (Simon, 1981). The role of a type, then, is to enforce correct 
interaction between these two worlds. If interaction is completely based on ports, the 
characteristics incorporated in a type definition always relate to the ports of a 
subsystem. Thus a convenient place for the abstraction barrier in a subsystem 
description is between the port definition and the remaining part of the subsystem 
definition. This is also suggested in figure 5.6.  
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FIGURE 5.8 Manipulating the model using subtyping and modularization 
a) iconic diagram of original design proposal 
b) corresponding bond graph 
c) specification of second transformer changed 
d) dualogue 
e) iconic diagram of dualogue 

Consequently, the description of a specification is directly analogous to a non–
modularized subsystem description, except that port definitions are replaced by a type 
declaration. 
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Type descriptions capture the essential characteristics of a subsystem. There are two 
kinds of essential characteristics: connection characteristics, which constrain the 
interaction from the point of view of the outer world, and structural characteristics, 
which constrain the interaction from the point of view of the inner world. Structural 
characteristics are a direct consequence of modularization; they are not explicitly 
present in non–polymorphic modeling systems. Therefore, type descriptions are not 
the same as the port definitions of non–modularized subsystem descriptions, and are 
elaborated shortly hereafter. 

Connection characteristics 
Connection characteristics should enforce correct usage of subsystems in models. 
They always relate to attributes of one or more complete ports, such as number, kind, 
dimension, (preferred) orientation of flow, etc. Therefore, it is easy to express these 
characteristics; it merely involves a proper definition of the ports of a subsystem. Also, 
the checking of these characteristics at the moment a subsystem is used is not difficult, 
as it comes down to verifying that the connections of a subsystem can be matched with 
its ports for all relevant attributes. 

Structural characteristics 
Structural characteristics should enforce specifications to have the correct form. 
Essentially, they involve functional constraints on port variables, like ‘the net power 
flow equals zero’, ‘effort e no function of flow f’, or ‘port variables x and y are 
reciprocal’. These simple examples show that expressing these characteristics 
otherwise than in natural language requires a ‘meta–language’ that contains powerful 
mathematical constructs (like reciprocity). Even were such a language available, the 
formal verification of such characteristics at the moment a type and a specification 
were combined would be far from trivial. The only thing that can be verified without 
this meta–language is whether the variables incorporated in the ports of a type 
properly match those of the specification. 
However, there are a few additional measures that can be taken, although they are not 
sufficient. It is relatively simple to define in a type description that its specifications 
have to contain a component of a certain type, or a parameter of a certain kind, or a 
specific function that is supposed to implement the required functional constraint(s). 
Verification of such characteristics is straightforward. In this way, the set of 
subsystems in the library that have not been verified for structural characteristics is 
significantly reduced. For these remaining subsystems, a mechanism can be devised 
that verifies structural characteristics right after a simulation run. At that moment, 
quantitative values of variables are available over a certain time interval, so that 
functional relations between variables can be explicitly checked, be it in a specific 
situation and for a limited interval. 

No powerful means for describing and checking structural type characteristics have 
been developed; further research is needed. 
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5.6.2 Subtyping 

The hierarchy shown in figure 5.7 is one featuring a specific form of subtyping, 
namely single inheritance: each type has only one supertype (except the root of 
course). Single inheritance is the simplest form of inheritance one can think of, yet it 
also restricts expressiveness. An example best clarifies this.  

Suppose we want to refine the model of the dc–motor subsystem by replacing the 
gyrator with a two–port storage element. The electrical port of this element behaves 
like an electrical Inductance. The mechanical port that acts as a mechanical 
Capacitance. Hence, we have to define a new ‘IC’ type for the two–port storage 
element. This definition requires selection of an appropriate supertype. Two options 
spring to mind: the Capacitance or the Inductance. But which one to choose? 
Arbitrarily selecting one of the options is not satisfactory. The problem in fact is 
structural: we would like to be able to express that a subsystem’s type is related to 
more than one other type. 

We could consider solving this by allowing multiple inheritance (i.e. enabling a type 
to have more than one supertype). However, this is not a good solution, mainly for two 
reasons. 

Firstly, the use of multiple inheritance introduces non–trivial implementation 
problems. For example, the name of the port of the I–type is inherited from the type 1–
port, just as is the case for the name of the port of the C–type. Therefore, if we define 
the new type IC as a subtype of both I and C, the new type inherits two different ports 
that have the same name. In other words, due to multiple inheritance, one and the same 
attribute (like the name of the port in the example) is inherited more than once, along 
different paths. Therefore, priority rules or other measures are needed to guarantee 
consistency. However, the problem is even more complicated; it is not clear 
beforehand whether the attribute that is inherited more than once relates to one and the 
same feature, or to different features. The reason behind these problems is that the type 
inheritance as used here is a form of inheriting state specifications, which is known to 
cause inconsistencies or conflicts in case of applying multiple inheritance 
(Aksit and Bergmans, 1992). 

Secondly, it is questionable whether multiple inheritance is appropriate here. We 
could rightfully say that the IC type is a kind of an Inductance if this behavior 
dominates, and if the second port merely modulates this behavior. However, equally 
well the reverse can be true; this depends on the problem context. Even more, it might 
be the case that the Inductance and Capacitance behavior are about equally important. 
What at least is true in all of these three cases is that the IC type transduces energy 
from one port to the other. In other words, the IC type is best characterized as a kind of 
Transducer, that consists of the combination of a Capacitance–like port and an 
Inductance–like port. Expressing the IC type as a kind of I and a kind of C is desirable 
from the reusability point of view, but from a modeling point of view the multiple 
inheritance is less defensible. This is also true in general: in a hierarchy concerning 
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one particular aspect (like dynamic behavior in our case) that is carefully built, 
multiple inheritance is mostly not appropriate. 

The above remarks lead us to conclude that what single inheritance lacks is the ability 
to describe a new type as a combination of other types. To solve that, it must be 
possible to express, besides the ‘kind–of’ relation, that a part of the newly described 
type is ‘defined–as’ some designated existing type. For example, the IC type would be 
described as a ‘kind–of’ Transducer (i.e. a subtype thereof), with the electrical port 
‘defined–as’ an Inductance and the mechanical port ‘defined–as’ a Capacitance. In that 
way, occurrences of problems analogous to those of multiple inheritance can be 
prevented, while still gaining expressiveness. However, in line with the 
characterization of designing as evolutionary, we think it is useful to first gain 
experience with polymorphic modeling in its simplest form, i.e. with only single 
inheritance. 

5.7 Application advice 

When making a new description of a subsystem, the following questions need to be 
answered by the model builder: 

– what are the relevant properties of the subsystem? 
– does the subsystem require a new type, or is it merely a new specification of an 

existing type? In other words, are the essential properties of the subsystem already 
captured in an existing type? A concrete example: is a PMDC motor a 
specification of the type DCMotor or is it a subtype of this type? 

The first question is not specific for polymorphic modeling; it is the basic question 
underlying abstraction. For this reason, it is beyond the scope of this thesis. The 
second question, however, is a direct consequence of modularization: is a new 
subsystem definition an instantiation or a subset of an existing type? There is no 
general answer to this question, but some helpful rules are the following. 

A subsystem is not a specification of the closest matching type, but requires a new 
type if: 

1 it has a different number of ports 
2 it differs in essential attributes of any of the ports 
3 its phenomenological representation (‘iconic diagram’, see chapter 4) differs from 

the one of the considered type 
4 multiple instantiations of the subsystem (that for example differ in resolution or in 

parameter values) should be contained in the library. 

Of these rules, the first two indicate a difference in connection characteristics, whereas 
the latter two signal different structural characteristics. 
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Suppose now that a new type needs to be created. It already has been noted that the 
type hierarchy should be built up carefully. Common properties should be factored out 
stepwise, such that meaningful generic types arise. Furthermore, it has been shown 
that the structure of the hierarchy, if set up properly, can capture knowledge such as 
how to build dualogues. Finally, it should be user–oriented in the sense that it is clear 
immediately in which part of the tree a certain type can be found. To realize this, the 
following issues need to be addressed: 

1 what is a proper set of subtypes for a certain type; or conversely, what is the proper 
supertype for a certain type? For example, in the hierarchy of figure 5.7, the 
subtypes of ‘bond graph element’ are ‘1–port’, ‘2–port’ and ‘multiport’. Instead, a 
primary distinction of ‘storage’ versus ‘non–storage’ could be considered (i.e. 
‘energic’ versus ‘non–energic’, Breedveld, 1984). 

2 if multiple aspects are available according to which subtypes can be distinguished: 
what order are we going to choose? The example hierarchy first subtypes 
according to the number of ports, then to ‘(non–)storage’, but it might also have 
been done otherwise. 

3 what name should be given to a type? The bond graph hierarchy uses the term ‘2–
port’, but this type might also have been called ‘transducer’. Also, the type that has 
been designated ‘multi–port’ could perhaps have been better called ‘junction’. The 
consequences of these choices will especially surface when one starts extending 
the hierarchy. 

Useful rules to answer these questions are the following: 

1 for each main engineering aspect (such as signal processing, dynamics, geometry), 
a separate hierarchy should be created. Consequently, a hierarchy will generally be 
organized around one type of port (respectively signal ports, energy ports or ports 
for geometrical connections, i.e. ‘solids ports’).  

2 it is preferable to first subtype according to connection characteristics, and then to 
structural characteristics. This implies for example that the subtypes of the root of 
the hierarchy should involve a distinction based on the number of ports of the type. 
The reason for this is twofold: 1) connection characteristics are generally readily 
identified, structural characteristics are not; 2) connection characteristics are better 
reusable than structural characteristics. 

3 a type should designate an artifact or a set of artifacts that is meaningful and 
relevant from the point of view of the main aspect of the hierarchy. Also, it should 
be meaningful and relevant from the perspective of the envisioned user of the 
hierarchy. For example, if the user of the system is someone with a bond graph 
background, the name ‘2–port’ is meaningful, but for someone not knowing bond 
graphs, ‘transducer’ is probably better. 

4 a type should be a proper description for all the types that inherit its properties. 
Conversely, it should belong to all the sets that are defined by its supertypes, i.e. it 
should truly be ‘a kind of’ all its supertypes.  
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5 a supertype should preferably differ from its immediate subtypes in only one 
attribute. This attribute should have the default or no value for the supertype. Also, 
there should be one subtype for each of the values the attribute can have, that is, if 
its range is small enough (e.g., not exceeding the magical number 7). 

6 the combined operation of generalizing a type one or a few levels and 
subsequently specializing the same amount of times along a different path should 
provide for transformation of a type which is meaningful and relevant from an 
engineering perspective. 

5.8 Conclusions 

Application of parametrization and typing in computer based modeling tools is useful, 
because these techniques enable hierarchical modeling and provide for encapsulated, 
reusable subsystems that are explicitly classified. In addition to this, port based 
interfaces improve modeling support by allowing an object–oriented instead of a 
process–oriented approach in modeling, and by making it possible to represent models 
as networks of interconnected subsystems. Modeling tools that incorporate 
parametrization, typing and port based interfaces can therewith fully support the 
reticulation as is done in bond graph modeling. 

However, the classification as common in bond graph models is not supported 
adequately. This is due to the fact that subsystem types are monomorphic in these 
systems, i.e. generic subsystems can not be defined. The use of subtyping and 
inheritance, such as introduced in SIMULA and common in object oriented 
programming, does not solve this, because the internal structure of subsystems can 
generally not be abstracted into generic subsystem types. As has been shown, generic 
subsystems can only be described if subtyping is combined with modularization. 
Modularization means that a subsystem definition is divided into two parts: a type that 
defines essential properties, and a specification that defines incidental properties. By 
allowing one type to have more than one specification, subsystem types become 
polymorphic. Therefore, the combination of modularization and subtyping is called 
polymorphic modeling. 

Polymorphic modeling enables computer–based systems to more adequately support 
classification. Also, the representation and reuse of subsystems is enhanced. 
Polymorphic types result in a hierarchical subsystem library. The importance of this is 
mostly that it provides the library with a conceptually clear and coherent structure. 
Furthermore, they give modeling systems the possibility to conform to the 
evolutionary nature of model building. Finally, they facilitate the manipulation of 
models, like the creation of alternatives and dualogues of bond graph models. 

The system design of the modularization mechanism is based on the observation that a 
type will describe two kinds of essential properties: connection characteristics and 
structural characteristics. Both these characteristics relate to ports, and therefore a type 
contains the (extended) port definitions of a subsystem. Consequently, the description 
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of a specification is directly analogous to a non–modularised subsystem description, 
except that port definitions are replaced by a type declaration. Type description has 
become a separate activity. It appeared that the system design of subtyping should be 
based on single inheritance. Multiple inheritance is not applied for two reasons: it 
causes implementation problems, and it is often used for inappropriate reasons, namely 
for expressing an ‘is defined as’ rather than an ‘is a kind of’ relation. 

When applying polymorphic modeling, the model builder is confronted with two new 
issues: 1) is a new subsystem definition an instantiation or a subset of an existing type? 
and 2) how should the hierarchy of subsystem types be built up?. Questions related to 
these issues have been identified globally, and useful rules on how to deal with them 
have been given.  



Chapter 6 

MAX, a mechatronic modeling environment 

6.1 Introduction 

The ultimate justification of engineering research lies in that it leads to artifacts that 
enhance human capabilities. In chapter 1, we identified that designing with an 
integrated problem solving approach is an activity that requires enhancement. In 
chapter 2, we presented the result of a theoretical investigation into design, and 
claimed to have found a model that can help to develop better support systems. In 
chapters 3, 4 and 5, we analyzed particular problems related to model building in the 
context of design, and proposed solutions that can help to overcome these. What 
remains to be done is to justify our claims, i.e. to show that: 

– the model of design presented in chapter 2 can be used fruitfully when developing 
a design support system 

– the concepts of multiple modeling languages (chapter 3 and 4) and polymorphic 
modeling (chapter 5) can be implemented and made to work in a system 

– a system that is based on the model of design and that incorporates multiple 
modeling languages and polymorphic modeling enhances designing with an 
integrated design approach 

For these purposes, the prototype computer–based design support system called MAX 
(Modeling and Analysis eXpert, Van Dijk and Breedveld, 1991; Van Dijk et al., 1992) 
was (further) developed. MAX is a model building environment; it supports the user in 
creating models and evaluating them by means of structural analyses. From that 
perspective, it is comparable to systems like QUBA (Top, 1993) and SCHEMEBUILDER 
(Sharpe and Bracewell, 1993). It does not provide functionality for model usage by 
means of calculation, like simulation or optimization. Rather, our philosophy in this is 
to create bidirectional links with existing computer–based environments that provide 
such functions, such as CAMAS (Broenink, 1990). Also, it does not implement an 
automated model synthesis strategy, i.e. it does not automatically compose models on 
the basis of design specifications, initial models or model assumptions. Therewith, it 
differs from most other automated modeling environments (Stein, 1991; 
Falkenhainer and Stein, 1992) as well as from systems aimed at automated conceptual 
design (e.g., Ulrich, 1988; Welch, 1992; Redfield and Krishnan, 1992; Malmqvist, 
1993).  The longer term objectives underlying MAX can be formulated as follows: 
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– create an extendible modeling kernel for a mechatronic designer’s workbench. 
– enable evaluation of modeling tools, concepts and methodologies in practical 

environments like industry (for commercial purposes) and university (for 
educational purposes). This implies that the system should have an appearance and 
performance that is beyond the prototyping phase that usually suffices for research 
projects. 

The MAX system is presented in more detail in this chapter. We start with giving an 
overview of the development in section 6.2. Next, we discuss the state of the art of 
MAX (section 6.3). An example model building session is presented in section 6.4 as to 
give an impression of how the model builder generally interacts with the system. 
Subsequently, an evaluation is presented (section 6.5), and conclusions are 
summarized (section 6.6). 

6.2 System development 

6.2.1 Main issues 

It was stated that one of the main objectives of MAX is to provide a modeling kernel of 
a mechatronic designer’s workbench. Such a workbench or integrated design 
environment (Roozenburg, 1993) is of great importance to generate high quality output 
in minimum time. In an integrated design environment, all tools, techniques and 
methods used by the designer can be applied in an integrated way. 

Support for different tasks is generally realized in separate (sub)systems in order to 
optimize its use, like Finite Element Analysis, parameter optimization or simulation. 
Therefore, a design environment is usually composed of a (possibly large) number of 
subsystems, each one with a specific supporting task. Integrated application requires 
that these subsystems are able to cooperate without user intervention. This implies that 
it should at least be possible to transfer information about the problem at hand and the 
proposed solution between subsystems. Hence, integration involves acces–sibility of a 
common problem description and the possibility to coordinate support. 

So when creating a designer’s workbench, two main issues appear. First, it must be 
decided which support should be at the designer’s disposal. This is treated in the next 
subsection (6.2.2). Second, it should be clarified how this support is to be integrated. 
This requires the description of a framework which defines the following: 

– the subsystems to be incorporated in the environment and their functionality 
– the interactions that are allowed between subsystems 
– the data that is exchanged between subsystems 

The framework should allow for new subsystems to be developed more or less 
independently and for existing subsystems to be incorporated, while still maintaining 
integration. In other words, the framework is the means to create an open, extendible 
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environment. In section 6.2.3, the framework within which MAX is developed is 
described.  

Note that this section (6.2) discusses the functionality and organization of a 
mechatronic designer’s workbench in general. Only parts of it are actually 
implemented in MAX; these are presented in section 6.3. 

6.2.2 Identification of required support 

In chapter 2, a model of designing was formulated. Here, is shown that this model 
enables to identify in a systematic way what kind of support is required. For this 
purpose the basic model (figure 2.7) is used. 

Support in the symbolic world 
The nature of the symbolic world is one of linguistics. Descriptions, while they exist, 
need some kind of easily accessible storage place. Support must be offered here by 
means of data– and knowledge bases. Their task is to store the descriptions properly 
and to supply the information when queried for it. In the model of designing, two 
separate elements exist in the symbolic world: the design object and described design 
knowledge. The design object forms the description of the current problem state, and 
the database holding this are referred to as the repository. By having one central 
repository, an integrated design environment provides for the availability of a common 
description of the problem at hand. The database storing described design knowledge 
is called the library.  

Descriptions are only valid when they have an interpretation, i.e. when they are 
correctly ‘spelled’ and are meaningfully ‘composed’. Inside computers, descriptions 
are expressed in two distinct forms: as a data-structure and as text in terms of a 
(computer) language. A computer language has a formal structure with rules for syntax 
and semantics. Descriptions expressed in a language easily allow a check for validity, 
as the syntax and the semantics of the language must apply to them. Descriptions 
expressed as a data-structure are much more effectively manipulated, however. In 
other words, both forms are useful, and therefore it needs to be possible to convert one 
form into the other, i.e.  to (de–)compile models. Syntax– and semantics checks are 
usually performed right before compilation. Therefore, the support of syntax– and 
semantics checking and (de–) compilation, is logically combined in parser–compilers.  

A design object or design knowledge generally contains several descriptions, that have 
to be consistent with each other, meaning that they do not describe incompatible facts. 
A change of the design object or design knowledge which would make it inconsistent 
should be detected before actually realizing it. In case of inconsistency, the system 
should react in an ‘intelligent’ way, i.e. in a coordinated manner. To this end, a 
manager is needed. The manager manages changes made to the design object and 
described design knowledge and coordinates different areas of support. It should 
therefore also support the checking of consistency. 
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Finally the validity of the descriptions depends on the goal for which they are used, 
which is the pragmatics aspect. Checking pragmatics is concerned with the 
completeness and applicability of a description to answer an information request (or 
rather observation request in terms of the model). It generally involves some kind of 
reasoning to do this checking, as information might be available in an implicit form. If 
so, the description has to be changed, either automatically or by the user. Because the 
manager takes care of the coordination of changes to descriptions, the support for 
checking pragmatics is logically incorporated into this subsystem. To this end, it 
should contain an AI–like inference engine that can do the reasoning needed for 
checking pragmatics. 

Note that the manager is in fact devoted to supporting the interface between the 
symbolic world and the real world. It is concerned with the modification and 
observation of the design object and design knowledge, i.e. with the arrows between 
the symbolic world elements and the real world elements of the model of design 
(figure 2.7). 

A summary of the subsystems required for supporting the symbolic world and their 
supporting task is given in table 6.1. All the tasks related to the symbolic world part of 
designing have been delegated to subsystems incorporated in the framework of the 
designer’s workbench. Consequently, the symbolic world part of designing is 
completely contained in the support system; none remains the responsibility of the 
designer. 

subsystem  function 

repository  store the integrated design object 

library  store described design knowledge 

manager  check consistency, completeness and applicability 
coordinate different areas of support 

parser–compiler  check syntax and semantics 
(de-)compile 

TABLE 6.1 Support in the symbolic world 

For the design object, extra structure was stated in the model by means of the four axes 
along which the descriptions may vary (c.f. section 2.4.3). This structure can be used 
to design the language definitions of the parser–compilers and the data– and file 
structures of the repository. Described design knowledge was classified into four 
categories. These categories can be used during the determination of a useful 
representation form and a structure for the library. 
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Support in the real world 
The model of designing includes three processors in the real world: design 
automatons, descriptors and observers. The design automaton and the descriptor 
modify the design object and design knowledge, and the observer inspects both the 
design object and design knowledge. The environment has to provide the means for 
performing these manipulations. To modify descriptions contained in the design object 
and described design knowledge, ‘pencils’ and ‘erasers’, e.g. writing–materials are 
needed. To enable observation actions, some kind of display tools or viewports are 
needed, again for both the design object and described design knowledge. 

The interaction between designer and environment is in general complex. The designer 
therefore needs guidance in how to interact with the system. This guidance can be 
separated into two areas: help on what stage (s)he is in now and how the system will 
react on possible interactions, and advice on how to proceed with the session. These 
functions can be combined in an informer which (on request) tells the designer what 
state the system is in at the moment, explains briefly how it got there, suggests what 
the designer can or should do next etc.  

Letting the support system perform some of the design activities as well involves 
automation of design tasks. Subsystems which realize this automation are called 
design automatons. Design automatons automatically generate or modify descriptions 
of the design object. An example of such a subsystem is a simulator, which generates 
values of output variables for a particular input situation and time interval. 

In table 6.2 the subsystems and their main function are summarized. All non-
automated activities in the model of designing are driven by the designer, and 
therefore it remains his or her responsibility to realize them. Thus it can be concluded 
that the design process as incorporated in the model of design is distributed over the 
designer(s) and the environment. 

subsystem  function 

writing-materials  enable manual design actions 

viewport  enable observation actions 

design automaton  automate design actions 

informer  provide information about the state of the system 
explain possibilities for continuation 
give advice on how to proceed 

TABLE 6.2 Support in the real world 
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Structure is given to the design process in the model by means of elementary design 
actions. This set of actions can be used as a reference to define how writing–materials 
should be able to modify the design object, and to decide which of these actions are to 
be performed automatically (which tasks to automate in the automatons). The 
characteristics of observation actions can be applied in a similar manner.  

Support in the conceptual world 
Every human being has one private conceptual world, inside his or her mind. 
Consequently, this world can only be supported indirectly by the design environment, 
through the ‘sensors’ and ‘actuators’ of the person. In other words, mental processes 
cannot be influenced directly. Support cannot be concerned with concepts straightway, 
but deals with the creation of an environment in which the designer can concentrate on 
the conceptual world, i.e. mental processes. This means that support is given on the 
level of the interface to the conceptual world, i.e. the arrows from and to this world. 
Hence, the environment should allow the designer’s concepts to be applied 
straightforwardly in driving activities, and should stimulate concept forming by the 
designer through interpretation and inference. 

Realization of the support mentioned above primarily concerns the user interface of 
the design environment. In literature, this aspect has been given a lot of attention. This 
is easily understood, for this world is the place where the “creativity” of designers has 
its roots. As this is a key factor in design, support of the conceptual world is very 
important. The task of the user interface can be summarized as to present the 
functionality of the environment in a form adapted to the conceptual world of the 
designer, such that (s)he is not bothered with matters that do not contribute to 
designing. Thus interaction between the design environment and the designer needs to 
be straightforward from the designer’s point of view, and not vice versa. 

subsystem  function 

user interface  adapt the system to the conceptual processes of the user 

TABLE 6.3 Support for the conceptual world 

In section 6.2.4, it is shown how the model of design can be applied in the 
development of the user interface of a support system. 

6.2.3 Organization into system framework 

Above, the subsystems which should be incorporated in the environment have been 
identified. These were: repository, library, parser–compilers, manager, writing-
materials, viewports, informer, design automatons and user interface. In this section, 
these subsystems are organized in a framework. From the viewpoint of system 
development, this organization should preferably be a layered structure. In that case it 
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is easier to keep the interactions between subsystems well–defined and manageable. 
This improves extendibility and maintainability characteristics of the system.  

To get a framework with a layered structure, one needs to define some kind of 
hierarchy of subsystems. Part of the needed hierarchy is present in the three world 
model, see figure 2.2. The subsystems related to the symbolic world are ‘under’ the 
subsystems related to the real world, which in turn are ‘under’ the user interface. 
Additional hierarchy, inside the support offered within one world, remains to be 
defined. This follows in a natural way by considering which services a subsystem 
needs in order to perform its task and by evaluating which other subsystems offers 
these services. This will be shown hereafter. 

Highest in the hierarchy is the user interface. The user interface presents the 
functionality of the system to the designer. To do so, it needs the service of the 
subsystems which actually realize this functionality. These are the subsystems which 
enable, guide or perform design actions and observation actions. Thus the user 
interface layer is on top of the writing-materials, the viewports, the informer and the 
design automatons. These subsystems take input from and present output to the user 
interface. Therefore, they are called the devices available to the user, and this layer is 
called the devices layer.  

These devices all operate upon the common problem description. They enable 
modification or observation of the design object and described design knowledge. 
These tasks require coordinated access to the problem state. Service from the manager 
is needed to realize this. Therefore, the manager is under the devices layer in the 
framework. 

The manager coordinates the interactions with the problem state and its manipulations 
and performs checks on consistency, completeness and applicability. These tasks are 
only concerned with the management of the access to the problem state, not with 
actual storage of information. For storage, the services of the repository and the library 
are required. So the layer containing these, called the bases layer, is under the 
manager. 

The problem state and described knowledge stored in the bases layer are contained in 
data structures. Importing and exporting this information generally takes place at the 
language level. This requires the ability to (de–) compile the descriptions and to check 
correctness. For this purpose the bases layer requires the services of the parser–
compilers. The layer formed by these parser–compilers is called the language layer. 
Hence, the language layer is under the bases layer. The language layer is the bottom 
layer of the hierarchy; it does not need the service of another subsystem. In the 
hierarchy obtained now, all the subsystems have indeed been incorporated. The 
complete framework, with the subsystems and their ordering, is presented in figure 6.1
. 
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FIGURE 6.1 Complete framework 

6.2.4 Presentation to the user 

The function of the user interface is to adapt the system to the conceptual processes of 
the user. The framework of figure 6.1 states that the functionality of the system is 
available to the user interface in the form of devices. So apart from appearance issues, 
the main question of user interface design is how devices should be made available as 
tools to the user. 

The following three observations can be made : 

1 the descriptor and the observer are generally simultaneously active on one and the 
same model. Hence, the user interface should present the designer a tool that 
integrates this model with the devices for description and observation. In other 
words, the user should interact with a tool that combines a writing–materials 
device, a viewport, and the involved model. This proposition maps exactly to what 
is known as the “Model–View–Controller” user interface paradigm (MVC–
paradigm, Krasner and Pope, 1988), which originates from the SMALLTALK-80 
programming community. This structuring principle has been shown to lead to 
conceptually clear, well maintainable, extendible interactive software. 

2 the smallest unit of knowledge that directly drives activities is an operator (part of 
the procedural knowledge). Therefore, tools should provide functionality in terms 
of operators such as have been identified in the TEA model (Ullman et al., 1988). 
This especially implies that design automatons should be configured so that they 
represent a single operator, and that they can be activated in a tool within which 
the result can also be evaluated. 

3 which tools should be available depends on the way in which the planning and 
control takes place during design; a switch of tools is preferably done only at the  
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moment that a new primitive goal is chosen. The way in which planning takes 
place depends on the mode of design, and thus the set of tools that a designer 
should have at his or her disposal is determined also by the mode of design: 
– in the explorational mode of design, the typical procedure followed by a 

designer is: inspection of the problem, browsing for relevant known solutions 
and selecting one, adaptation of this solution to the particular situation. Hence, 
in the explorational mode, the tool set should consist of a ‘problem inspector’, 
a ‘principle solutions browser’ and a ‘proposed solution editor’. 

– in the systematic mode of design, the typical procedure is something like: 
decide which path to follow in the design plan, perform next procedure in this 
path. Therefore, the tool set should incorporate mainly a ‘method controller’, 
and ‘processors’ for each procedure in the plan. 

– in the problem solving mode of design, the typical procedure is: specify the 
goal, search and apply relevant transformations (rules) that might bring the 
goal closer, evaluate result. In this mode, the tool set should thus incorporate a 
‘problem specifier’, a ‘planner/inference engine’, an ‘explainer’ and a ‘rule 
editor’. 

 If modes are to be applied in combination, also combined tool sets should be 
available. We have decided to concentrate initially on a system that supports the 
exploratory design mode. 

6.2.5 Multiple model formulations and polymorphic modeling 

In previous chapters, two concepts to support model building were developed: 
multiple model formulations (chapter 3 and 4) and polymorphic modeling (chapter 5). 
In order to utilize these concepts, they have to be fitted into the framework. 

To implement multiple model formulations, the following rules should be applied: 

1 all subsystems in the framework that process models in some way should separate 
the description of a (sub)system from its representation 

2 the repository should store the core model 
3 translations and transformations from and to the core model (e.g., the algorithms 

presented in chapter 5) should be implemented in a design automaton 
4 visualization of language specific descriptions should be implemented in a design 

automaton 
5 the manager should take care that translations and transformations and 

visualization are activated properly 
6 writing–materials for a language specific model should be designed such that only 

model manipulations are available that result in visible model changes in the 
accompanying viewport (protection) 

Implementation of polymorphic modeling requires the following rules to be complied 
to: 
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1 the library should separately store explicit definitions of subsystem types and 
subsystem specifications 

2 the repository should contain subsystems that are instantiated from definitions 
contained in the library 

3 writing materials should be designed that allow to create and modify definitions of 
subsystem types and subsystem specifications 

4 writing materials should be devised that allow to vary types and specifications of 
subsystems contained in the core model 

Summarizing, implementation of multiple model formulations and polymorphic 
modeling requires two structuring principles for model storage: separation of 
subsystem description and subsystem representation, and separation of subsystem type 
and subsystem specification. When these two principles are combined, one issue needs 
special attention: in how far should a differentiation be made between components and 
elements. This differentiation is important from the point of view of understanding 
models, but also has a direct practical relevance; a type that represents an element can 
only have a specification in terms of equations. (A type that represents a component 
should preferably be further reticulated until elements are obtained, but this is not 
necessary.) In the bond graph formulation, the differentiation between component and 
element is generally explicitly represented: components are depicted by ellipses (i.e., 
as a word bond graph subsystem), whilst elements are represented by mnemonic 
codes. In iconic diagrams, the differentiation is usually not made explicit. There are 
three ways to test whether a polymorphic subsystem is a component or an element: 

1 type–based: if a type inherits from a bond graph element, then the subsystem is an 
element, otherwise it is a component. Hence, the model builder decides on whether 
the subsystem is a component or element when the type is chosen, which will 
usually be at the moment of subsystem creation.  

2 specification–based: if the specification is a graph, then the subsystem is a 
component, else it is an element. The model builder thus decides on whether the 
subsystem is a component or element when the internal dynamics of the subsystem 
dynamics are determined. 

3 type and specification–based: if the type inherits from a bond graph element and if 
the specification is a set of equations, then the type is an element, else it is a 
component. The decision on component or element behavior is, like in the 
previous case, taken when the internal dynamics of the subsystem dynamics are 
determined. 

The first solution has two drawbacks; this option implies that the number of types 
drastically increases, and it might not be clear at instantiation time whether a 
subsystem is a component or an element. The second proposal is undesirable because 
the differentiation can give wrong results; a type can have an equational specification 
while not being an element. In the last option, the chances that such wrong results 
occur are diminished, although not completely eliminated; even if a type inherits from 
an element and has an equational specification, it might still not be an element.  
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However, this will occur infrequently. Therefore, we assert that the last solution is 
preferable; the drawback of this solution is less serious than those of the first solution. 

6.3 State of the art 

For illustration and in order to prepare the case study of section 6.4, the state of the art 
of the MAX system is described in this section. However, it should be kept in mind that 
this is a momentary impression; MAX is continually being modified and expanded. As 
such, it proves that design indeed is evolutionary. We start by giving an overview of 
the complete system, and then look at the subsystem type hierarchy in more detail. 

6.3.1 Overview 

The system has been implemented in SMALLTALK-80. This is an object oriented 
language (Goldberg and Robson, 1989) and programming environment (Goldberg, 
1989), that is well suited for incremental development of prototypical software 
applications. The organization of the software of MAX complies to the framework of 
figure 6.1 and the rules stated in section 6.2.5. 

The user interface of MAX was set up largely according to the OPEN LOOK guidelines 
(Sun, 1990), see Stet (1993). Consequently, MAX works with a windowing 
environment that meets the major goals of a good interactive application: it is simple, 
consistent and efficient. 

MAX contains the following tools. 

Graphical image editors 
MAX features two graphical image editors, namely the ‘IPM editor’ and the ‘Bond 
graph editor’. These editors allow entry, analysis and modification of main models and 
specifications of subsystems in the iconic diagram and bond graph formulation 
respectively. Initial implementations of these editors have been described by Breunese 
(1992), but major revisions have since been done in order to more rigorously 
incorporate the separation between model description and model representation. The 
appearance and functionality of these editors will be shown in the next section. 

Equation editor 
The ‘Equation editor’ supports the entrance and modification of specifications of 
subsystems in the form of equations, i.e. elementary model specifications. Details 
about the design and implementation can be found in Evers (1993) and in Breunese 
(1993b). 

Library browser 
The ‘Library browser’ enables the user to browse through the libraries of subsystems 
and components. Furthermore, it is the means by which the user can modify the 
organization of the library. Figure 6.2 depicts the tool. Meindertsma (1992) discusses 
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implementation issues related to this. The library of design solutions plays a major role 
in supporting explorational design. Therefore, the library incorporated in MAX will be 
discussed in more detail hereafter. 

Icon editor 
By means of the ‘IPM image editor’, the designer can create and modify the icon that 
is to be used for a type in the iconic diagram formulation, including terminal 
definitions and allowable orientations of the icon. Currently, the IPM image editor is a 
bit map editor, but work is being done to migrate it to a vector–based drawing tool. 
The design and implementation of this tool has not been given particular attention; it 
merely has been created on a pragmatic basis. 

Type editor 
Using the ‘Type editor’, the model builder can describe a subsystem type in a 
representation–independent way. As explained in chapter 5, all attributes of a type are 
port–related, except for parameters. The port–related attributes that can be defined in 
the type editor are: port name, dimension, orientation preference, causal preference 
and domain. Implementation details are described by Meindertsma (1992). 

Organizer 
The ‘Organizer’ is the part that informs the user about the current problem state. To 
that end, it can show to the user the part–of hierarchy of the core model and the model 
contained in some editor(s). Also, this tool is the central point for detailed error 
messages, and it lists which other tools are active. Finally,  all other tools except for 
the help system can be activated from here. 

Help system 
On user request, a hyper–text based  ‘Help system’ (part of the informer) provides 
context–sensitive help about how to interact with MAX. It does not give advice on how 
to proceed with the session. Implementation of this tool is described by Evers (1993). 

Herewith, all tools that are contained in MAX have been outlined. In addition, design 
automatons are available that are activated by means of issuing commands from tools. 
The following kinds of automatons are implemented: 

– ‘graph transformers’. These translate and transform the core model to language 
specific descriptions and vice versa. Currently, this is realized for two model 
formulations: bond graphs and iconic diagrams. In chapter 4, the algorithms 
underlying the implementation were discussed in detail. 

– ‘visualizers’. These realize the visualization from language specific description to 
language specific model (see chapter 3). Only for the iconic diagram formulation is 
a vizualizer fully operational, although it still needs improvement. For the bond 
graph formulation, a visualizer is under construction. Wijsman (1992) provides 
information about implementation.  
 

– ‘constraint propagation machines’. These are mainly applied for performing 
causal analyses of bond graph models. Causal analysis is a non–trivial issue that 
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needs attention, also in a design context (Van Dijk, 1994). Constraint propagation 
machines also are used for the purpose of orientation analysis (chapter 4). 
Nevenzel (1992) and Geertsema (1993) discuss the implementation of causality 
analysis using constraint propagation machines in detail. 

The manager that is implemented in MAX mainly takes care that models are consistent 
throughout the system. This subsystem also coordinates the available tools. The bases 
layer has been implemented straightforwardly in the form of a simple file system, both 
for the repository and the library. For a library of a size required for real design 
applications, this is definitely not sufficient. The language layer, finally, includes 
parser–compilers for importing models from and exporting models to the CAMAS 
modeling and simulation environment (Broenink et al., 1992). 

6.3.2 Hierarchy of subsystem types 

The hierarchy of subsystem types in MAX is such that creation of useful alternative 
models by means of sequences of ‘generalize’ and ‘specialize’ upon a type is 
supported. Furthermore, types were given names from a design perspective, i.e., 
functional and not physical. This means that a component is expected to mainly 
behave conform the stated function, although other physical effects may be 
incorporated in the specification. Finally, emphasis was laid on types for (controlled) 
electro–mechanical subsystems. 

Three hierarchies are currently available: 

1 signal processors hierarchy: this hierarchy contains subsystems of which the 
functionality mainly is to process signals in some way. This also implies that these 
subsystems mostly only have signal ports. 

2 components hierarchy: in here, models of physical components are contained. This 
is the most extensive hierarchy. Figure 6.2 depicts an illustrative part of this 
hierarchy. 

3 special hierarchy: in this hierarchy, model parts that are specific for a certain 
formulation are contained. These are typically knots. Also, ports are incorporated 
in here. This hierarchy will not expand much; only if new formulations or new 
physical domains are considered does it need adaptation. 

The type hierarchy was designed largely according to the guidelines given in section 
5.7.2. 
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FIGURE 6.2 MAX library browser 
Top left: hierarchically organized subsystem types 
Top right: list of specifications of the selected type 
Middle right: available representations of the selected type 
Bottom: comment about selected type and specification 
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6.4 Case study 

Hereafter, a relatively small design problem is presented that shows how MAX can be 
applied in a design context. This is sufficient to demonstrate the functionality and 
utility of the system. More realistic test cases, i.e. for larger problems in an industrial 
environment, are currently being studied. Preliminary results can be found in Kleijn 
(1993). 

The problem was to design a mechatronic drive system to be used by third year master 
students to let them gain some experience in the design and implementation of a 
practical controller. This problem was given to two third year master students, who 
had to come to a documented conceptual design proposal within the period of 250 
hours (Bolks, 1993). The following list gives the main requirements: 

– low cost 
– no maintenance 
– clearly observable difference between controlled and non–controlled performance 
– robust to misuse 
– safe 
– variable stiffness and load 
– choice between linear and non–linear behavior of the load 

Figure 6.3 depicts the initial design proposal, entered in the iconic diagram editor.  

 

FIGURE 6.3 Initial design proposal 

Subsequently, the model was transformed to a bond graph formulation, see figure 6.4.  
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FIGURE 6.4 Initial proposal in bond graph formulation 

Alternative solutions, whereby parts of the system are realized in other domains, were 
be systematically found by subsequently generalizing and specializing parts of the 
bond graph. A good candidate for this operation was the flexibility in the transmission 
(the C that represents torsional stiffness): it might be easier to vary the flexibility if it 
was realized in the translation mechanical domain. This solution was created from the 
available one by introducing a transformer between the torsional stiffness and the load, 
and after that changing the domain of the bond graph fragment between the two 
transformers to the mechanical translation domain. Figure 6.5 depicts the result.  

 

FIGURE 6.5 Alternative solution, systematically created by means of subsequently 
generalizing and specializing model parts 

The newly created proposal was transformed back again to the iconic diagram 
formulation, see figure 6.6. It showed that the solution could be realized as two pulleys 
coupled by means of an elastic belt. This solution had certain advantages compared to 
the initial proposal; variable stiffness and load can be obtained easily by incorporating  
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two pairs of pulleys with differing transmission ratios, and/or by varying the number 
of elastic belts that couple the pulleys. This seemed an elegant way to also satisfy the 
robustness, safety and cost requirements. Therefore, this solution was selected to work 
out further.  

 

FIGURE 6.6 Alternative solution, iconic diagram formulation 

Now that the major configuration were known, a proper motor could be chosen. 
Again, alternative solutions were systematically found, this time by inspecting and 
creating proper motor specifications with differing behavior. Specifications for a 
Permanent Magnet DC–motor and various types of wound motors were loaded in the 
library. Because the PMDC motor is the least expensive and meets the performance 
requirements, this option was chosen. A more detailed model of the design proposal 
resulted (see figure 6.7).  

 

FIGURE 6.7 Motor selected systematically by specifying it to a PMDC 

The idea was to come to a resonance frequency of the load that was clearly visible, i.e. 
about 3 Hz. On basis of this, parameters were given a roughly estimated value. To 
evaluate the system response in the time domain and the sensitivity to parameter 
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variations, simulation experiments could be done. To this end, the refined model was 
transformed to a bond graph, and made causal (figure 6.8).  

 

FIGURE 6.8 Causal bond graph model of the selected alternative 

This causal model was exported to CAMAS, and simulations were done (figure 6.9).  

 

FIGURE 6.9 Initial simulation experiment for the selected alternative 
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The first conclusion following from these experiments was that the selected parameter 
values indeed gave the system the desired resonance frequency. However, the second 
conclusion was that the simulations do not match with the behaviour that was expected 
for this system: the inertias at the motor side were vibrating, rather than at the load 
side. 

Closer inspection of the causal bond graph model of the motor (figure 6.10) revealed 
the cause of this: the gyrator inside the motor, which transduces the energy from the 
electrical to the mechanical rotation domain, was acting as a torque source (i.e., current 
controlled), rather than as a velocity source. The cause of this unwanted causality was 
the fact that the electrical inductance of the motor was incorporated.  

 

 

 

 

 

 

 

 

FIGURE 6.11 Causality of the specification of the motor 

By using a true servo amplifier, the bandwidth of the actuator can be enlarged such 
that it becomes negligible. In that case, the electrical inductance can be left out of the 
model of the motor. The motor model was adjusted accordingly by changing its 
specification. Simulation experiments with this refined model confirmed the expected 
and desired dynamic behavior (figure 6.11). Hence, detailed design was started for this 
design proposal. 

6.5 Evaluation 

In this section, strengths and weaknesses of the current implementation of MAX are 
outlined. Also, desirable extensions are indicated. 

 



130 6       MAX, a mechatronic modeling environment 

 

FIGURE 6.11 Simulation experiment with the causally correct model 

6.5.1 Favorable points 

MAX works 
The first point is that MAX actually works in the way that was envisioned. It is ready to 
be submitted to further tests in industrial design practice and in educational 
environments.  

Use of the model of design 
With respect to the typical deficiencies of computer–based design support systems (see 
chapter 2), the following can be noted. The MAX system provides an environment for 
model building that is conceptually clear and does not constrain the designer to 
particular model building methods. Moreover, it features a clearly defined, modular 
internal structure that is well suited for incremental extension of its functionality and 
for integration with other systems. Finally, major development choices have been 
backed up by theoretical investigations done in a design context, and not in a tool 
building context. We assert that these benefits are due to the fact that the system was 
based on a formal model of designing that both reasonably well describes our 
understanding of the design process, and is well suited for the development of support. 
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Modeling the conceptual design object 
MAX allows the designer to describe and observe the design object at different levels 
of concreteness, ranging from the functional level (causal word bond graph) to the 
initial form level (iconic diagram model). Within this range, models can have any 
resolution. Also, multiple alternatives can be considered. The only requirement for 
fully supporting a model of the design object during conceptual design that is not met 
is the possibility to vary the precision; parameters have either no value or an exact 
value. What is especially interesting for designing with an integrated problem solving 
approach is that MAX enables users to simultaneously inspect the design object from 
multiple perspectives by means of opening multiple editors on one and the same 
model. 

Polymorphic model refinements 
In the case study, it has been shown that polymorphic refinements of the model (i.e. 
generalize–specialize and specify) can be fruitfully applied during model building. 
These mechanisms allow the user of MAX to incrementally expand and revise the 
model. Consequently, the model builder can start solving the problem with a simple 
model of a partial solution, and gradually add relevant detail. This achievement is 
more significant than the fact that extensive models can be built quickly, using off–
the–shell components from the library. Several researchers have claimed that building 
extensive models with little effort would be a major benefit of computer–based design 
support systems, as more detail could be considered earlier on in the design process 
(Roozenburg, 1993). Rather, the contrary is true; one of the major dangers of 
computer–based design support is that such systems stimulate or demand the 
consideration of too much (irrelevant) detail, which merely obscures the real issues 
and is a waste of precious time. 

Multiple model formulations 
The case study also has illustrated that MAX fully integrates the iconic diagram 
formulation and the bond graph formulation of a model by means of bidirectional 
transformations. The model builder has complete freedom in choosing  the formulation 
he or she desires for a particular task, without having to later re–enter the same 
information. It appears that iconic diagrams are particularly useful for synthesis–
oriented tasks. This is probably due to the fact that this formulation has a non–static 
vocabulary and is to some extent context–sensitive; these characteristics indicate that 
in the iconic diagram formulation one is confronted automatically with the question of 
whether a certain model fragment is appropriate for the problem at hand or not. The 
bond graph formulation is especially powerful in analysis–oriented tasks. Hence, the 
integration of these two formulations is an important contribution, as it implies that 
models suitable for synthesis tasks have been integrated with models for analysis 
tasks. 

Problem understanding 
Looking back at the overall process of the case study, it can be concluded that the 
intermediate results of transformations and polymorphic refinements and the structural 
analyses that can be done in MAX have helped to learn quickly and efficiently about 
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the actual design problem and proposed solution. That is, they have helped to properly 
classify the design problem and to verify correctness, consistency and suitability of the 
proposed solution in early stages. As a result, more informed decisions could be made 
earlier on in the design process. Hence, MAX improves problem understanding 
throughout the process. 

Enhancing communication 
Due to the availability of a well–structured, extendible subsystem library and the 
flexibility of model manipulation, little effort and time is required for model building 
in MAX. Consequently, the designer is less discouraged to make a well–defined, formal 
model of the solution that is proposed. Communicating a solution with other designers 
is easier on the basis of such a formal model, especially since these other designers are 
not forced to use the same representation. Therefore, it can be concluded that MAX 
also enhances communication. As a result, more alternative solutions can be 
considered and proposed alternatives can be better judged on their merits than before.  

Evolutionary nature of design 
Systems have been described in literature that are comparable to MAX in terms of 
objectives and functionality, such as SCHEMEBUILDER (Bradley et al., 1993; 
Sharpe and Bracewell, 1993), QUBA (Top, 1993) and SYSFUND (Tomiyama et al., 1989). 
All these are interesting and to some extent have been influential on the ideas 
incorporated in MAX. However, none of these systems is able to support the 
evolutionary nature of design as well as MAX does. This is because these systems have 
not combined polymorphic modeling and multiple model formulations (or comparable 
concepts). It is this combination that gives MAX the possibility to conform to the 
evolutionary design process, and to suggest a systematic search for alternative design 
solutions. 

6.5.2 Weaknesses 

Constructing the subsystem type hierarchy 
A weak point of MAX is that classification of subsystem types into a kind–of hierarchy 
in the library is not straightforward. In chapter 5, advice has been given on how to deal 
with this matter. However, this advice is of limited value; it does not suggest a 
rigorous classification for simple subsystems, let alone for complex subsystems with 
many ports (Aalbers, 1993). However, obtaining a good type hierarchy is important, as 
it has a major influence on which refinements can be easily made by means of the 
generalize–specialize mechanism and which are more tedious. The explanation is that 
unique classification is not possible; it depends on user and problem context. Top 
(1993) asserts that the problem of making a proper classification in MAX is caused by 
the fact that different ontologies (conceptual knowledge structures, Alberts, 1993) are 
forced into one hierarchy. However, even when considering one ontology (bond 
graphs for example), classification is hard (Karnopp and Rosenberg, 1968). Top’s 
remark is correct to the extent that it is not fruitful to force subsystems that do not have 
ports of the same kind into one hierarchy. In MAX this is also supported, because 
different  
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hierarchies can coexist. For example, subsystems that process signals and hence have 
only signal ports are contained in another hierarchy than components having energetic 
behavior. 

There are three ways to deal with the difficulty of classification:  

1 don’t restrict relations between types to subtyping and single inheritance. This is in 
fact what was suggested in chapter 5. However, it is not obvious which alternatives 
should be included and how this will influence the model refinements that can be 
made. This solution needs further research and experimental evaluation. 

2 automate the classification of types, for example on the basis of optimizing reuse 
of type definitions. At first glance, this seems to be an attractive solution, but it is 
expected that it will eventually lead to bad type hierarchies. 

3 allow each user to make a personal (or even problem class specific) hierarchy, and 
make sure that communication across systems of different users and across 
different projects remains possible. This can be imagined as a way of customizing 
MAX to individual preferences. It is a ‘solution’ that does not require any action, 
and it allows us to gain some experience before deciding on definitive measures. 
Therefore, this option is preferable for the time being. 

IPM image editor 
When working with the system, one soon learns that the major bottleneck in MAX is 
currently the IPM image editor. Drawing icons with this tool is tedious and time–
consuming. The tool suffers from the same deficiencies as conventional CAD systems: 
it is not based on a proper understanding of the task it supports. Consequently, it works 
in a system–oriented way rather than in a designer–oriented way. This is mainly due to 
the fact that the design of this tool has not yet been given much attention. 

Required level of expertise 
MAX indeed has become an expert system, in the sense that it gives valuable feedback 
to knowledgeable users. It is expected that more ignorant users are overwhelmed 
quickly because of the seemingly unstructuredness that is the result of the flexibility 
offered by MAX. Also, the high level of abstraction on which MAX communicates with 
the user demands knowledgeable users.  

6.5.3 Desirable extensions 

Many useful extensions to MAX can be imagined. Here, only a few of the more 
important ones are indicated. 

– the subsystem library should be enlarged extensively with models for components 
and principle design solutions for relevant areas (for example those given by 
Koster (1993) for mechanical constructions). Work in this area is currently being 
done (Olmeco Consortium, 1991). 
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– additional modeling languages should be added to the system, to start with a 
functional language. 

– the modeling kernel of MAX should be extended such that multi–dimensional 
bonds are supported as well. 

– MAX should be equipped with tools such as are needed for other modes of design, 
so that it will not force the usage of the explorational design mode. 

– manipulation and comparison of alternative design solutions is currently not 
supported well; improvements are desirable here. 

– to make MAX more suitable for the explorational mode of design, a documentation 
system should be added to the subsystem library. This can be combined well with 
the above two extensions (Prins and Olthoff, 1993). 

6.6 Conclusions 

The model of designing as formulated in chapter 2 has been useful while developing 
MAX in the following ways: 

– it has enabled a systematic identification of support required in a designer’s 
workbench 

– it suggested an organization of the identified subsystems into a framework 
– on basis of the model, a useful way of combining subsystems into tools has been 

found, and a reference for development choices for individual subsystems has been 
provided. 

Polymorphic modeling and multiple modeling languages can be implemented within 
the framework by incorporating two structuring principles for model storage in the 
system: separation of subsystem type and subsystem specification, and separation of 
subsystem description and subsystem representation. 

Contributions of MAX  are the following:  

1 it provides the designer a means to concurrently consider the integrated system at 
different levels of abstraction, ranging from not concrete (i.e., functional) with low 
resolution to concrete, with high resolution. 

2 it gives the designer an unequaled flexibility to manipulate the description of the 
design. Yet, these manipulations are well–structured and require little effort and 
time. 

3 it allows the designer to build descriptions of the design object in synthesis–
oriented terms, and to evaluate this same design object by means of powerful 
analysis tools, such as causality analysis, orientation analysis and simulation. In 
other words, it integrates models suitable for synthesis tasks with models suitable 
for analysis tasks. 

Intermediate results of transformations and polymorphic refinements are essential in 
order to learn about the actual design problem, that is, to check validity and 
completeness of the problem statement and to verify correctness, consistency and  
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suitability of the proposed solution. As a result, more informed decisions will be made 
earlier on in the design process. 

The little effort and time that is required for realizing transformations and polymorphic 
refinements is essential in order to communicate about the actual design problem, that 
is, to describe and represent the proposed solution. As a result, more alternative 
solutions can be considered and proposed alternatives can be better judged on their 
merits than before.  

The improved support for learning and communication will lead to a shortening of the 
design process and an improved final design. These benefits will especially become 
apparent when an integrated design approach is applied. 

A weakness of MAX is that classification of subsystem types into a kind–of hierarchy 
is hard, especially for complex subsystems with many ports. The underlying problem 
is that classification is context–dependent, and hence an optimal classification cannot 
uniquely be determined. For the time being, it is proposed to deal with this by allowing 
each user to make a personal (or even problem class specific) hierarchy, and to make 
sure that communication across systems remains possible. 

Overall conclusion is that MAX is a powerful model building environment that is well 
adapted to usage by designers. Hence, it complies well to its main development 
objective; it is suitable to serve as an extendible modeling kernel for a mechatronic 
designer’s workbench. MAX is not a full size design system yet; to become that, it 
should be further extended. 





Chapter 7 

Discussion 

7.1 Synopsis 

The engineering design process was analyzed in detail for the purpose of developing 
advanced computer–based design support. This analysis has been motivated by the 
hypothesis that computer–based systems will be better able to enhance designing if 
they are developed on the basis of a model of designing that explicitly reflects what is 
understood of the design process. 

A model of designing was obtained in the following way. We characterized designing 
as a contextually situated, evolutionary process. We categorized existing models of 
designing by means of a taxonomy and reviewed a well–known model contained in 
the most suitable category, namely the Task/Episode Accumulation model 
(Ullman et al., 1988). In this review, we identified reasons why this model is not 
straightforwardly applicable for our purpose, and subsequently formulated a new, 
more applicable model that incorporates the TEA model. 

The new model of designing made clear that the conceptual design task is of crucial 
importance when designing with an integrated problem solving approach. Also, it 
clarified that abstractions contained in the design object play a crucial role in this task. 
However, systems that properly support the maintenance and manipulations of these 
abstractions are lacking. Therefore, we have firstly addressed the question in what 
terms models should be made, i.e. in what way we should formulate models in a 
computer–based system. Secondly, we have investigated how computer–based 
systems can (should) support the creation and modification of abstractions.  

The language in which a model is formulated determines what information can be 
expressed in a model, and whether it is easy or not to observe and interpret the 
information that is incorporated in the model. It has been argued that when using an 
integrated design approach, it should be possible to simultaneously formulate one 
model in multiple languages, in such a way that the model can be manipulated in any 
of the formulations. This concept was called multiple model formulations. We have 
devised a system setup that enables multiple model formulations and yet will keep 
different formulations of a model consistent and tractable. This setup specifies that 
different formulations are coupled to each other through a central core model. We have 
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taken bond graphs and iconic diagrams as an example set of formulations for 
investigating whether the setup is realizable. 

To support model building, computer–based systems should provide powerful means 
for decomposition, classification and representation. It was shown that there are three 
implementation techniques currently exploited in this sense: parametrization, typing, 
port–based interfacing. These techniques together give modeling tools the capability to 
support decomposition and representation of models by means of powerful concepts, 
such as reticulation and hierarchical modeling. However, adequate support for 
classification has not been available. Improving this requires the use of additional 
techniques, namely modularization of subsystem descriptions into a type and a 
specification, and subtyping of subsystem types, i.e. expressing a type as a 
specialization of a more general type. It was explained that the combined application 
of modularization and subtyping (called polymorphic modeling) leads to hierarchical 
subsystem libraries and gives modeling systems the possibility to conform to the 
evolutionary nature of model building. System design issues related to modularization 
and subtyping were discussed and some general advice on how to apply polymorphic 
modeling was given.  

Finally, we discussed the development and functionality of the MAX system. MAX is a 
model building environment for controlled electro–mechanical systems; it supports the 
user in creating models and evaluating them by means of network-based analyses. A 
main objective underlying MAX is to form the modeling kernel of a mechatronic 
designer’s workbench. Therefore, its development was based on the model of 
designing developed in this thesis. Multiple model formulations (i.e. bond graphs and 
iconic diagrams) and polymorphic modeling are incorporated in the system. The state 
of the art of MAX was presented and the utility of the environment was shown by 
means of a case study.  

7.2 Conclusions 

In the course of the reasoning outlined above, the following points have been made. 

Model of designing 
Designing has to be viewed as a contextually situated, evolutionary process, because: 

– design is context dependent. 
– design problems are ill–structured and incomplete. 
– design involves an initiation of change, to be realized within time–constraints 

A descriptive, object–oriented and concurrent model of designing is best suited for 
explaining how designers are able to design. However, such models in general and the 
TEA model specifically cannot be applied in the development of design support 
straightforwardly, because: 
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– inconsistencies may arise in systems based on these models (e.g., the design object 
is modeled in a way that does not match with design actions the user wants to 
take). 

– the evolution of the design state has not been worked out (e.g., it is unclear in what 
way the information incorporated in the design state develops in the course of 
designing). 

– context–dependent and context–free parts are not distinguished. 

The newly proposed model of designing explicitly presents an overall view upon 
designing, which helps to prevent inconsistent or incompatible assumptions. It 
describes a pattern how context might influence the design process and how the 
evolution can be given a framework. It consists of a context–free basic model which 
relates the design object, the design process and design knowledge (figure 2.7). This 
basic model clarifies that designing involves a specific form and combination of 
learning and communication. Additional context–dependent features have been 
incorporated in the model by further characterizing the design object and propagating 
the obtained features through the rest of the basic model. Evaluation of the new model 
showed that it is of a unifying nature, that it clarifies how designers can deal with the 
context–dependent and evolutionary nature of design and that it enables to explanation 
and prediction of how designing can be enhanced. 

There are three different ways to enhance designing: by formalizing design 
knowledge, by automating design activities on basis of formalized knowledge and by 
creating practical computer–based systems that incorporate formalized knowledge and 
automated activities. Computers do not possess the communication– and learning 
capabilities that humans have, and therefore cannot tackle realistic design problems 
autonomously. This implies that enhancing design by means of practical systems 
requires systems that support designers in their communication and learning processes. 
In communication and learning, the use of abstractions plays a major role. Therefore, 
modeling capabilities of design support systems need to be improved, specifically for 
support of the conceptual design task. 

Multiple model formulations 
In order to keep multiple model formulations consistent and tractable, a system should 
be set up in the following way (figure 3.12). The user has access to a formulation 
through a language specific view of the design object in an editor. This view is created 
by adding protection to a language specific model such that the user can only issue 
commands that have visible effects in the view itself. The (graphical) language 
specific model results from a visualization of a (textual) language specific description 
that only stores intrinsic model properties. The language specific description finally is 
linked with a central core model by means of a bidirectional transformation. The core 
model integrally stores the information needed for all different model formulations, 
and coordinates the different language specific descriptions.  

For conceptual design, a set of graphical languages is required that at least enables 
description of function, behavior and initial form. In the domain of controlled electro–
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mechanical systems, the set consisting of iconic diagrams, bond graphs and the THESIS 
formalism (a variant of the Modern Structured Analysis notation) seems appropriate. 
Feasibility of the system setup has been shown for iconic diagrams and bond graphs.  

Transformations 
To be able to transform an iconic diagram, it was necessary to identify formal rules 
that are incorporated in this formulation. These formal rules relate to the usage of 
references and terminals. When transforming an iconic diagram into a bond graph 
model, the main problem is to properly choose orientations for bonds in the bond 
graph. This requires an orientation analysis prior to the actual transformation. During 
orientation analysis, the iconic diagram is checked upon correctness and the power 
flow through the connections of the diagram is given an orientation.  

During transformation of a bond graph model to an iconic diagram, the following three 
issues appear: 

– ordering: the order of components that will appear in a series connection in an 
iconic diagram is constrained, but not explicitly available in a bond graph. 
Therefore, it needs to be generated appropriately. 

– cycle treatment: bond graph junctions contained in a cycle have special properties, 
that have to be regarded. 

– global references placement: bond graphs generally do not include knots that 
represent global references. Hence, these need to be generated during 
transformation and included correctly in the iconic diagram. 

An algorithm that deals with these issues and automatically generates a correct iconic 
diagram from a bond graph was described.  

Polymorphic modeling 
Computer–based modeling tools that incorporate parametrization, typing and port–
based interfaces allow building models as networks of encapsulated, reusable 
subsystems that are explicitly classified. However, generic subsystems cannot be 
defined in such systems. The use of subtyping and inheritance, such as common in 
object–oriented programming, does not solve this, because the internal structure of 
subsystems can generally not be abstracted into generic subsystem types. Generic 
subsystems can only be described if subtyping is combined with modularization. 
Modularization in this context means that a subsystem definition is divided into two 
parts: a type that defines essential properties, and a specification that defines incidental 
properties. By allowing one type to have more than one specification, subsystem types 
become polymorphic (figure 5.6). The combination of subtyping and modularization 
results in a hierarchical subsystem library that has a conceptually clear and coherent 
structure. Furthermore, it facilitates the manipulation of a model, like the creation of 
analogues of models and the variation of detail incorporated in models. 

MAX 
Contributions contained in the MAX system are the following:  
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1 it provides the designer a means to concurrently consider the integrated system at 
different levels of abstraction, ranging from functional and with a low resolution to 
configuration and with a high resolution. 

2 it gives the designer an unequaled flexibility to manipulate the description of the 
design. Yet, these manipulations are well–. 

3 it allows the designer to build descriptions of the design object in synthesis–
oriented terms, and to evaluate this same design object by means of powerful 
analysis tools, such as causality analysis, orientation analysis and simulation. In 
other words, it integrates models suitable for synthesis tasks with models suitable 
for analysis tasks. 

Conversions between model formulations and polymorphic refinements enable 
learning about the actual design problem. Little effort and time is required for realizing 
conversions between model formulations and for polymorphic refinements, which 
enhances communication about the actual design problem. This improved support for 
learning and communication leads to a shortening of the design process and improved 
quality of final designs. These benefits especially become apparent when an integrated 
design approach is applied. Major difficulty of using polymorphic modeling (and thus 
of MAX) is that classification of submodel types into a tree–like kind–of hierarchy is 
hard, especially for complex subsystems with many ports. However, the overall 
conclusion is that MAX is a powerful model building environment that is well adapted 
to usage by designers. 

7.3 Suggestions for future work 

In chapter 2, a new model of designing was presented. We claimed that the model is of 
a unifying nature, without working this out in detail. An interesting and theoretically 
relevant direction for further work would be to extend the new model by more 
explicitly relating it to available models of designing. More specifically, this should be 
aimed primarily at understanding how the conception of a design problem and its 
initial solution come into being. This requires the conceptual world part and the 
observer contained in the model to be described in more detail, for example by looking 
into models from the area of cognitive psychology. 

Polymorphic modeling as described in chapter 5 has been based on a combination of 
modularization and a single inheritance subtyping mechanism. It has appeared that the 
use of single inheritance gives problems during classification of more complex 
subsystems, as it is not expressive enough. However, multiple inheritance is not 
applicable; rather, the solution should be pursued in the direction of other subtyping 
mechanisms. Further research in this area is needed before definite answers can be 
given. 

In relation to multiple model formulations, the major extension that is desirable is to 
incorporate a functional language (e.g. THESIS formalism, block diagrams or linear 
graphs) into the mechanism. This implies that the formalism in which the core model 
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is stored has to be adjusted and that additional conversion algorithms have to be 
specified. Furthermore, it would be interesting to make the transformation algorithms 
that were presented work in an incremental fashion. Also, visualization of model 
formulations can be improved. Finally, an investigation should be started into 
formalisms that support dynamic contraction and unfolding of the part–of hierarchy of 
a model, thereby adjusting the decomposition of the model. 

Numerous directions can be imagined in which the work on MAX could continue. Of a 
high priority is the extension of the subsystem library so that it actually contains 
significant declarative design knowledge. This is currently being addressed in the 
OLMECO project. Other significant improvements that are desirable are to enable the 
use of multi–bonds throughout the system, to support the process of selecting optional 
solutions and deciding which one to utilize appropriately, and to enhance the 
maintenance and manipulation of alternative models. 







Appendix B 

Simplification of bond graphs and iconic diagrams 

In this appendix, rules are given for simplification of junction structures, both for bond 
graph models and iconic diagrams. 

B.1 Rule 1: Dangling junctions 

A dangling junction is a junction that has no signal bond connection and one power 
bond connection. It can simply be removed from the graph. The power bond is 
removed too. 

 

FIGURE B.1 Removal of dangling junction 
(j can be a 0–junction, a 1–junction or a Y–junction) 

B.2 Rule 2: Elimination of junctions 

Junctions can be eliminated from a graph if the energy flow is not branched at the 
junction. 

 

FIGURE B.2 Elimination of junctions 
(j can be a 0–junction, a 1–junction or a Y–junction) 

This means that the junction is connected to two bonds having the same dimension as 
the junction itself. In a bond graph, one of the bonds should be directed to the junction, 
the other from the junction. There should be no signal bond connected to the junction. 
The simplification consists of removing the junction and one of the two bonds. This 
situation is shown in figure B.2. 
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B.3 Rule 3: Joining of junctions 

Two junctions of the same type can be joined if there is exactly one power bond 
between the junctions. 

 

FIGURE B.3 Joining of junctions 
(j can be a 0–junction, a 1–junction or a Y–junction) 

The simplification is carried out by removing the bond between the junctions and by 
transplanting all connections of one junction to the other junction. The first junction 
can then be removed. This situation is shown in figure B.3. 

B.4 Rule 4: Elimination of a Double Difference 

This simplification rule is valid for domain attributed bond graph models only. 

 

FIGURE B.4 Double difference simplification 
(only valid for domain attributed bond graph models) 

A double difference is the situation that two S–type junctions (i.e., 1–junctions in non–
mechanical bond graph fragments and 0–junctions in mechanical bond graph 
fragments) each are located between one pair of P–type junctions (the dual junction of 
the S–junction). Hence, a cycle consisting of four bonds is present. This situation can 
be simplified using the technique shown in figure B.4. Though the simplification 
actually increases the number of bond graph elements, the elimination of the loop is 
considered a profitable action, and it will often lead to more simplifications using rules 
2 and 3. There is a number of possible orientations for the bonds involved in the  
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elimination of the double difference. The possible configurations and the 
consequences for the resulting graph are summarized in table B.1. 

situation before simplification situation after simplification 

bond 1 bond 2 bond 3 bond 4 bond A bond B bond C bond D bond E 

P→S P→S P→S P→S P→S P→S S→P P→S P→S 

P→S P→S P→S S→P illegal situation 

P→S P→S S→P P→S illegal situation 

P→S P→S S→P S→P P→S P→S S→P P→S S→P 

P→S S→P P→S P→S illegal situation 

P→S S→P P→S S→P P→S S→P S→P P→S P→S 

P→S S→P S→P P→S P→S S→P S→P P→S S→P 

P→S S→P S→P S→P illegal situation 

S→P P→S P→S P→S illegal situation 

S→P P→S P→S S→P S→P P→S S→P P→S S→P 

S→P P→S S→P P→S S→P P→S S→P P→S P→S 

S→P P→S S→P S→P illegal situation 

S→P S→P P→S P→S S→P S→P S→P P→S S→P 

S→P S→P P→S S→P illegal situation 

S→P S→P S→P P→S illegal situation 

S→P S→P S→P S→P S→P S→P S→P P→S P→S 

TABLE B.1 Bond orientations in the double difference simplification 

 





Appendix C 

The THESIS formalism 

This appendix gives an overview of the THESIS formalism. It has been taken (with 
permission) from Wijbrans (1993).  

A specification in THESIS consists of a hierarchical set of graphs and element 
descriptions, as shown in Figure C.1. The graphs, called activity diagrams, describe 
the structure of the system, whereas the element descriptions describe the behavior and 
the properties of the components. The edges in the graphs denote information flow in 
the system, the vertices denote processing, storage or mode-switching. 

 

FIGURE C.1       Structure of the THESIS formalism 



150 C       The THESIS formalism 

 
The controller can be described with three different kinds of descriptions, namely: 

– The context diagram, a graph that describes the interaction with the environment 
(Section C.1). 

– The activity diagrams, graphs that describe the structure of the controller (Section 
C.2). 

– The element descriptions, that describe the elements that are not decomposed 
further. There are three kinds of element descriptions, that have a common format 
for the declaration of the interface to the activity diagram (Section C.3). These are: 

1 The primitive process specification (Pspec), the textual or graphical 
description of data processing (Section C.4). 

2 The control process specification (Cspec), the textual or graphical description 
of mode switching (Section C.5). 

3 The store specification (stores), the textual or graphical description of the 
buffer that stores information (Section C.6). 

Only the vertices in the activity diagrams are described. The edges, called flows, are 
defined implicitly. They depend on the elements they are connected to. This deviation 
from the formalism of Yourdon (1989) enables reuse and information hiding. 

C.1 The context diagram 

Each specification starts with a toplevel diagram, called the context diagram. It shows 
the interaction of the system with its environment. Figure C.2 shows the four different 
symbols that may be used on this diagram. These are: 

a The terminator, symbolizing an external entity. 
b The data process indicating the processing of information; on the context 

diagram it symbolizes the complete controller under design. 
c The data flow, symbolizing the flow of information for processing, in general, 

these are continuous or sampled flows. 
d The control flow, symbolizing the flow of information for mode-switching, in 

general these are events. 

 
 
   a     b         c    d 

FIGURE C.2       Symbols used on the context diagram 
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The context diagram must contain one data process that symbolizes the whole 
controller under design. All entities in the environment that this controller 
communicates with must be shown as terminators. All communication flows, i.e., data 
flows and control flows, between the controller and its environment must be shown on 
the context diagram. No other flows are allowed on this diagram. No other information 
from the environment than that specified by flows may be used in the controller. 

C.2 The activity diagrams 

An activity diagram describes the relationships between the components of the 
controller graphically. It is a graph, in which the edges show information flow and in 
which the vertices show processing or storage of information. Both data processing 
and mode switching are modeled in a single activity diagram. Separate symbols 
indicate the different activities, these are symbol b, c and d of figure C.2 and the 
following new symbols: 

e The control process or Cspec symbolizes the finite state machine for mode-
switching. 

f  The store shows storage of information for either data processing or mode-
switching. 

g The merge point indicates that the contents of these flows are multiplexed. 
h The split point indicates that the information flowing on the input flow is copied 

to both output flows. 
i The activation flow, only allowed between a control process and a data process, 

indicates that the control process (de)activates the data process. 

 
 
     e            f          g   h         i 

FIGURE C.3       Graphical elements on activity diagrams 

Elements 
Data processing is modelled with data processes (figure C.2b), data flows (figure C.2
c) and data stores (figure C.3f). As shown in figure C.1, a data process may either be 
specified by a lower level activity diagram or by a primitive process specification. 

Mode switching is modelled with the control flows (figure C.2d) and the control 
process (figure C.3e). It contains a finite state machine that controls the activation and  
 

 



152 C       The THESIS formalism 

deactivation of processes on the activity diagram. Only one control process is 
associated with each activity diagram. The activation flow (figure C.3i) shows the 
activation of processes by this control process. 

The merge point (figure C.3g) consists of several flows combining into a single flow 
of the same data type. All data entering on the input flows is multiplexed on the single 
outgoing flow. In the continuous-time part only one of the input flows may be active. 
In the discrete-time part several of the input flows may be active concurrently. 
However, in general only one of the input flows will be active in a practical controller, 
because otherwise synchronization problems may result. 

The split point (figure C.3h) consists of a single flow splitting into multiple flows. The 
data on the input flow is copied to all outgoing flows. Split points are used if the same 
data is needed in several processes. 

Structure and element attributes 
The activity diagram itself is an attributed, labeled and directed graph, i.e., attributes 
are associated with the edges and the vertices. These attributes define important 
properties of each. In the graph, vertices are defined as elements with ports. The 
different ports of a vertex may not have the same name. 

Vertices in the graph have the following attributes: 

– A kind, i.e., process, control specification or store. 
– A name, that is used to identify their description. 
– For processes a number. 

The name of the vertex, and the diagram number of the graph it resides on together 
determine the name of its description. The description specifies the ports of that 
vertex. 

The edges have three attributes: the flow type, and the names of the source port and 
destination port. These must be defined in the vertices that they connect. The 
directions of the ports have to match the direction of the edge. All other attributes of 
the ports, e.g., the arithmetic type and the sample frequency have to be the same. 

Ports on an activity diagram are defined by edges (flows) that are connected at one 
side only. Depending on whether the input or the output is unconnected, the port is an 
input or an output port. These flows must have a name. This name is also the name of 
the port. 

C.3 The interface declaration part 

Pspecs, Cspecs and stores have the interface declaration part in common. This part 
declares types, ports and parameters. It consists of the keyword pspec, cspec or store, 
followed by the actual port and parameter declarations. Listing C.1 gives the syntax 



C.4 The primitive process specification 153 

rules in Backus-Naur form for the interface declaration part, the ports and the 
parameters. In this notation, items between angle brackets (‘<’ and ‘>’) denote 
nonterminals of the language. Items in bold denote reserved words and special 
characters. A list separated by bars (‘|’) denotes items of which one must be chosen. 
Brackets denote optional parts of the syntax, braces denote the repetition of parts. An 
index number with a brace denotes the minimum number of times such the part within 
the braces must be used. Finally, parentheses are used to group symbols together. 

<interfacepart> ::= <heading> [<typedeclpart>] [<parmdeclpart>] <portdeclpart> 
<heading> ::= (pspec | cspec | store) <name> 
<typedeclpart> ::= type { <typedecl> }1 
<typedecl> ::= <typename> = ( <arraytype> | <recordtype> | <enumtype> | <typename>) ; 
<arraytype> ::= array { [ <size> ] }1 <typename> 
<recordtype> ::= record { <variabledecl> }1 end 
<enumtype> ::= <name> { , <name> }0 ; 
<parmdeclpart> ::= parameters { <variabledecl> }1 
<variabledecl> ::= <typename> <name> { , <name> }0 ; 
<portdeclpart> ::= interface { <portdecl> }1 
<portdecl> ::= (actout | conin | conout | datin | datout ) : { <variabledecl> }1 

LISTING C.1 Syntax of the element header 

The arithmetic types that can be used as typenames are the set of predefined basic 
types (table C.1) and the defined types. Ports have a direction, i.e., input or output and 
a flow type, i.e., activation, data or control. The direction and the flow type are 
combined to the keywords actout, conin, conout, datin and datout. 

C.4 The primitive process specification 

The body of a primitive process specifies the algorithm that is performed by this 
process to transform the input data to the output data. In principle, assignment 
statements in any mathematical form are allowed in THESIS, as long as the following 
rules are obeyed: 

– Only the input ports, parameters and local variables can be used in an expression. 
There are no global variables. 

– Local variables must receive a value before they are used in an expression. 
– All output ports must be assigned a value exactly once. 

Examples of valid descriptions are mathematical equations, block diagrams and 
SHIDECS statements.  In SHIDECS, a process is always described by a sequence of 
statements. 
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Name  Description 

bool  Boolean value, only the values TRUE and FALSE are allowed. 

int  Integer value. It represents the set of whole numbers. 

real  The type real represents a continuous continuum of values. 

BOOL  Boolean value implementation on a computer. Only the values TRUE and 
FALSE are allowed. 

BYTE  Byte value on a computer. It is represented by an 8 bit number and 
commonly used for character representation. 

INT16 
INT32 
INT64 

 Implementations of integer values on a computer. The range of these 
types is respectively from –216 to  216 – 1 for the INT16, –232 to 232 – l 
for the INT32 and –264 to 264 – 1 for the INT64. 

REAL32 
REAL64 

 implementations of real values on a computer. The REAL32 uses the 32 
bit IEEE–754 standard format for its representation, the REAL64 uses 64 
bit IEEE–754  standard  format. 

TABLE C.1       Primitive types supported in THESIS 

C.5 The control  speciflcation 

The body of a Cspec specifies the behavior of the Finite State Machine (FSM) 
controlling the activation of processes.  A control specification consists of four parts: 

– A state variable containing the current state of the FSM. 
– Conditions specifying when the transitions of the FSM may occur. 
– Actions that are associated with the transitions (the Mealy part). 
– Actions that are associated with the state (the Moore part). 

The control specification may be specified as a set of boolean equations and 
statements, as a set of state-transition tables and action tables, or as a state-transition 
diagram.  In SHIDECS, it is always described as two sequences of statements, i.e., one 
for the Mealy part and one for the Moore part. 

C.6 The store specification 

The body of the store specification specifies its behavior.  The contents of the store are 
defined implicitly by the arithmetic type of the incoming flow and of the outgoing 
flow.  Currently, the following store types are available: 
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– The integrator that is a state-variable in the continuous-time system. 
– The Zero Order Hold that forms the interface from the discrete-time part to the 

continuous-time part. 
– The sampler that specifies the sampling of continuous-time signals in the discrete-

time part. 
– The initial token provider, this store is used when cyclic dependencies of processes 

occur.  It contains a single token at startup, the initial value. 
– The subsampler, used to get from a higher frequency to a lower frequency. 
– The oversampler, used to go from a lower sampling frequency to a higher 

sampling frequency. 
– The overwriting store.  If a new token arrives before the old token is consumed, it 

will overwrite the existing token. 
– The regenerating store.  As the overwriting store, but it will deliver the token to its 

output as often as it is asked for by the receiving process, e.g., a variable. 
– The bounded queue, this is a first-in first-out queue with a fixed number of buffer 

places. 

 





Appendix D 

Models of the example system 

In this appendix, different forms of models will be derived of the example system of 
chapter 5. Figure D.1 depicts the iconic diagram of the system. 

 

FIGURE D.1 Iconic diagram of the example system 
a) Top level 
b) Internal model for the dc–motor 

In bond graph terms, this model is as shown in figure D.2. Note that by means of the 
indicated parameters, the bond graph makes clear that all elements (except the voltage 
source) are thought to be linear and time–invariant. 
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FIGURE D.2 Corresponding bond graph model of the example system 
a) Top level 
b) Internal model for the dc–motor 

A state space formulation of this model is as follows: 
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with x1 equal to the state of Iload and x2 to the state of Le. 

By taking the parameters equal to the values specified in table D.1, the quantitative 
state space formulation becomes: 
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parameter  value 

n  6 

Rload  5 · 10-5 [Nms] 

Iload  0.3 [kgm2] 

Re  10 [Ω ] 

Le  3 · 10-3 [H] 

Km  50 · 10-3 [NmA-1] 

Rm  1 · 10-5 [Nms] 

Im  0.8 · 10-3 [kgm2] 

TABLE D.1 Parameter values 
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